chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費(fèi)注冊(cè)]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>數(shù)值算法/人工智能>

Python性能優(yōu)化

大?。?/span>0.4 MB 人氣: 2017-10-10 需要積分:1
Python性能優(yōu)化的20條建議2016-07-05 17:38
  1、優(yōu)化算法時(shí)間復(fù)雜度
  算法的時(shí)間復(fù)雜度對(duì)程序的執(zhí)行效率影響最大,在Python中可以通過選擇合適的數(shù)據(jù)結(jié)構(gòu)來優(yōu)化時(shí)間復(fù)雜度,如list和set查找某一個(gè)元素的時(shí)間復(fù)雜度分別是O(n)和O(1)。不同的場(chǎng)景有不同的優(yōu)化方式,總得來說,一般有分治,分支界限,貪心,動(dòng)態(tài)規(guī)劃等思想。
  2、減少冗余數(shù)據(jù)
  如用上三角或下三角的方式去保存一個(gè)大的對(duì)稱矩陣。在0元素占大多數(shù)的矩陣?yán)锸褂孟∈杈仃嚤硎尽?a href='http://www.brongaenegriffin.com/v/' target='_blank' class='arckwlink_none'>推薦一個(gè)python群,首先是四七二,中間是三零九,最后是二六一,里面有大量的學(xué)習(xí)資料。
  3、合理使用copy與deepcopy
  對(duì)于dict和list等數(shù)據(jù)結(jié)構(gòu)的對(duì)象,直接賦值使用的是引用的方式。而有些情況下需要復(fù)制整個(gè)對(duì)象,這時(shí)可以使用copy包里的copy和deepcopy,這兩個(gè)函數(shù)的不同之處在于后者是遞歸復(fù)制的。效率也不一樣:(以下程序在ipython中運(yùn)行)
  import copy
  a = range(100000)
  %timeit -n 10 copy.copy(a) # 運(yùn)行10次 copy.copy(a)
  %timeit -n 10 copy.deepcopy(a)
  10 loops, best of 3: 1.55 ms per loop
  10 loops, best of 3: 151 ms per loop
  timeit后面的-n表示運(yùn)行的次數(shù),后兩行對(duì)應(yīng)的是兩個(gè)timeit的輸出,下同。由此可見后者慢一個(gè)數(shù)量級(jí)。
  4、使用dict或set查找元素
  python dict和set都是使用hash表來實(shí)現(xiàn)(類似c++11標(biāo)準(zhǔn)庫(kù)中unordered_map),查找元素的時(shí)間復(fù)雜度是O(1)
  a = range(1000)
  s = set(a)
  d = dict((i,1) for i in a)
  %timeit -n 10000 100 in d
  %timeit -n 10000 100 in s
  10000 loops, best of 3: 43.5 ns per loop
  10000 loops, best of 3: 49.6 ns per loop
  dict的效率略高(占用的空間也多一些)。
  5、合理使用生成器(generator)和yield
  %timeit -n 100 a = (i for i in range(100000))
  %timeit -n 100 b = [i for i in range(100000)]
  100 loops, best of 3: 1.54 ms per loop
  100 loops, best of 3: 4.56 ms per loop
  使用()得到的是一個(gè)generator對(duì)象,所需要的內(nèi)存空間與列表的大小無關(guān),所以效率會(huì)高一些。在具體應(yīng)用上,比如set(i for i in range(100000))會(huì)比set([i for i in range(100000)])快。
  但是對(duì)于需要循環(huán)遍歷的情況:
  %timeit -n 10 for x in (i for i in range(100000)): pass
  %timeit -n 10 for x in [i for i in range(100000)]: pass
  10 loops, best of 3: 6.51 ms per loop
  10 loops, best of 3: 5.54 ms per loop
  后者的效率反而更高,但是如果循環(huán)里有break,用generator的好處是顯而易見的。yield也是用于創(chuàng)建generator:
  def yield_func(ls):
  for i in ls:
  yield i+1
  def not_yield_func(ls):
  return [i+1 for i in ls]
  ls = range(1000000)
  %timeit -n 10 for i in yield_func(ls):pass
  %timeit -n 10 for i in not_yield_func(ls):pass
  10 loops, best of 3: 63.8 ms per loop
  10 loops, best of 3: 62.9 ms per loop
  對(duì)于內(nèi)存不是非常大的list,可以直接返回一個(gè)list,但是可讀性yield更佳(人個(gè)喜好)。
  python2.x內(nèi)置generator功能的有xrange函數(shù)、itertools包等。
  6、優(yōu)化循環(huán)
  循環(huán)之外能做的事不要放在循環(huán)內(nèi),比如下面的優(yōu)化可以快一倍:
  a = range(10000)
  size_a = len(a)
  %timeit -n 1000 for i in a: k = len(a)
  %timeit -n 1000 for i in a: k = size_a
  1000 loops, best of 3: 569 μs per loop
  1000 loops, best of 3: 256 μs per loop
  7、優(yōu)化包含多個(gè)判斷表達(dá)式的順序
  對(duì)于and,應(yīng)該把滿足條件少的放在前面,對(duì)于or,把滿足條件多的放在前面。如:
  a = range(2000)
  %timeit -n 100 [i for i in a if 10 《 i 《 20 or 1000 《 i 《 2000]
  %timeit -n 100 [i for i in a if 1000 《 i 《 2000 or 100 《 i 《 20]
  %timeit -n 100 [i for i in a if i % 2 == 0 and i 》 1900]
  %timeit -n 100 [i for i in a if i 》 1900 and i % 2 == 0]
  100 loops, best of 3: 287 μs per loop
  100 loops, best of 3: 214 μs per loop
  100 loops, best of 3: 128 μs per loop
  100 loops, best of 3: 56.1 μs per loop
  8、使用join合并迭代器中的字符串
  In [1]: %%timeit
  …: s = ”
  …: for i in a:
  …: s += i
  …:
  10000 loops, best of 3: 59.8 μs per loop
  In [2]: %%timeit
  s = ”.join(a)
  …:
  100000 loops, best of 3: 11.8 μs per loop
  join對(duì)于累加的方式,有大約5倍的提升。
  9、選擇合適的格式化字符方式
  s1, s2 = ‘a(chǎn)x’, ‘bx’
  %timeit -n 100000 ‘a(chǎn)bc%s%s’ % (s1, s2)
  %timeit -n 100000 ‘a(chǎn)bc{0}{1}’.format(s1, s2)
  %timeit -n 100000 ‘a(chǎn)bc’ + s1 + s2
  100000 loops, best of 3: 183 ns per loop
  100000 loops, best of 3: 169 ns per loop
  100000 loops, best of 3: 103 ns per loop
  三種情況中,%的方式是最慢的,但是三者的差距并不大(都非??欤?。(個(gè)人覺得%的可讀性最好)
  10、不借助中間變量交換兩個(gè)變量的值
  In [3]: %%timeit -n 10000
  a,b=1,2
  …。: c=a;a=b;b=c;
  …。:
  10000 loops, best of 3: 172 ns per loop
  In [4]: %%timeit -n 10000
  a,b=1,2
  a,b=b,a
  …。:
  10000 loops, best of 3: 86 ns per loop
  使用a,b=b,a而不是c=a;a=b;b=c;來交換a,b的值,可以快1倍以上。
  11、使用if is
  a = range(10000)
  %timeit -n 100 [i for i in a if i == True]
  %timeit -n 100 [i for i in a if i is True]
  100 loops, best of 3: 531 μs per loop
  100 loops, best of 3: 362 μs per loop
  使用 if is True 比 if == True 將近快一倍。
  12、使用級(jí)聯(lián)比較x 《 y 《 z
  x, y, z = 1,2,3
  %timeit -n 1000000 if x 《 y 《 z:pass
  %timeit -n 1000000 if x 《 y and y 《 z:pass
  1000000 loops, best of 3: 101 ns per loop
  1000000 loops, best of 3: 121 ns per loop
  x 《 y 《 z效率略高,而且可讀性更好。
  13、while 1 比 while True 更快
  def while_1():
  n = 100000
  while 1:
  n -= 1
  if n 《= 0: break
  def while_true():
  n = 100000
  while True:
  n -= 1
  if n 《= 0: break
  m, n = 1000000, 1000000
  %timeit -n 100 while_1()
  %timeit -n 100 while_true()
  100 loops, best of 3: 3.69 ms per loop
  100 loops, best of 3: 5.61 ms per loop
  while 1 比 while true快很多,原因是在python2.x中,True是一個(gè)全局變量,而非關(guān)鍵字。
  14、使用**而不是pow
  %timeit -n 10000 c = pow(2,20)
  %timeit -n 10000 c = 2**20
  10000 loops, best of 3: 284 ns per loop
  10000 loops, best of 3: 16.9 ns per loop
  **就是快10倍以上!
  15、使用 cProfile, cStringIO 和 cPickle等用c實(shí)現(xiàn)相同功能(分別對(duì)應(yīng)profile, StringIO, pickle)的包
  import cPickle
  import pickle
  a = range(10000)
  %timeit -n 100 x = cPickle.dumps(a)
  %timeit -n 100 x = pickle.dumps(a)
  100 loops, best of 3: 1.58 ms per loop
  100 loops, best of 3: 17 ms per loop
  由c實(shí)現(xiàn)的包,速度快10倍以上!
  16、使用最佳的反序列化方式
  下面比較了eval, cPickle, json方式三種對(duì)相應(yīng)字符串反序列化的效率:
  import json
  import cPickle
  a = range(10000)
  s1 = str(a)
  s2 = cPickle.dumps(a)
  s3 = json.dumps(a)
  %timeit -n 100 x = eval(s1)
  %timeit -n 100 x = cPickle.loads(s2)
  %timeit -n 100 x = json.loads(s3)
  100 loops, best of 3: 16.8 ms per loop
  100 loops, best of 3: 2.02 ms per loop
  100 loops, best of 3: 798 μs per loop
  可見json比cPickle快近3倍,比eval快20多倍。
  17、使用C擴(kuò)展(Extension)
  目前主要有CPython(python最常見的實(shí)現(xiàn)的方式)原生API, ctypes,Cython,cffi三種方式,它們的作用是使得Python程序可以調(diào)用由C編譯成的動(dòng)態(tài)鏈接庫(kù),其特點(diǎn)分別是:
  CPython原生API: 通過引入Python.h頭文件,對(duì)應(yīng)的C程序中可以直接使用Python的數(shù)據(jù)結(jié)構(gòu)。實(shí)現(xiàn)過程相對(duì)繁瑣,但是有比較大的適用范圍。
  ctypes: 通常用于封裝(wrap)C程序,讓純Python程序調(diào)用動(dòng)態(tài)鏈接庫(kù)(Windows中的dll或Unix中的so文件)中的函數(shù)。如果想要在python中使用已經(jīng)有C類庫(kù),使用ctypes是很好的選擇,有一些基準(zhǔn)測(cè)試下,python2+ctypes是性能最好的方式。
  Cython: Cython是CPython的超集,用于簡(jiǎn)化編寫C擴(kuò)展的過程。Cython的優(yōu)點(diǎn)是語(yǔ)法簡(jiǎn)潔,可以很好地兼容numpy等包含大量C擴(kuò)展的庫(kù)。Cython的使得場(chǎng)景一般是針對(duì)項(xiàng)目中某個(gè)算法或過程的優(yōu)化。在某些測(cè)試中,可以有幾百倍的性能提升。
  cffi: cffi的就是ctypes在pypy(詳見下文)中的實(shí)現(xiàn),同進(jìn)也兼容CPython。cffi提供了在python使用C類庫(kù)的方式,可以直接在python代碼中編寫C代碼,同時(shí)支持鏈接到已有的C類庫(kù)。
  使用這些優(yōu)化方式一般是針對(duì)已有項(xiàng)目性能瓶頸模塊的優(yōu)化,可以在少量改動(dòng)原有項(xiàng)目的情況下大幅度地提高整個(gè)程序的運(yùn)行效率。
  18、并行編程
  因?yàn)镚IL的存在,Python很難充分利用多核CPU的優(yōu)勢(shì)。但是,可以通過內(nèi)置的模塊multiprocessing實(shí)現(xiàn)下面幾種并行模式:
  多進(jìn)程:對(duì)于CPU密集型的程序,可以使用multiprocessing的Process,Pool等封裝好的類,通過多進(jìn)程的方式實(shí)現(xiàn)并行計(jì)算。但是因?yàn)檫M(jìn)程中的通信成本比較大,對(duì)于進(jìn)程之間需要大量數(shù)據(jù)交互的程序效率未必有大的提高。
  多線程:對(duì)于IO密集型的程序,multiprocessing.dummy模塊使用multiprocessing的接口封裝threading,使得多線程編程也變得非常輕松(比如可以使用Pool的map接口,簡(jiǎn)潔高效)。
  分布式:multiprocessing中的Managers類提供了可以在不同進(jìn)程之共享數(shù)據(jù)的方式,可以在此基礎(chǔ)上開發(fā)出分布式的程序。
  不同的業(yè)務(wù)場(chǎng)景可以選擇其中的一種或幾種的組合實(shí)現(xiàn)程序性能的優(yōu)化。
  19、終級(jí)大殺器:PyPy
  PyPy是用RPython(CPython的子集)實(shí)現(xiàn)的Python,根據(jù)官網(wǎng)的基準(zhǔn)測(cè)試數(shù)據(jù),它比CPython實(shí)現(xiàn)的Python要快6倍以上。快的原因是使用了Just-in-Time(JIT)編譯器,即動(dòng)態(tài)編譯器,與靜態(tài)編譯器(如gcc,javac等)不同,它是利用程序運(yùn)行的過程的數(shù)據(jù)進(jìn)行優(yōu)化。由于歷史原因,目前pypy中還保留著GIL,不過正在進(jìn)行的STM項(xiàng)目試圖將PyPy變成沒有GIL的Python。
  如果python程序中含有C擴(kuò)展(非cffi的方式),JIT的優(yōu)化效果會(huì)大打折扣,甚至比CPython慢(比Numpy)。所以在PyPy中最好用純Python或使用cffi擴(kuò)展。
  隨著STM,Numpy等項(xiàng)目的完善,相信PyPy將會(huì)替代CPython。
  20、使用性能分析工具
  除了上面在ipython使用到的timeit模塊,還有cProfile。cProfile的使用方式也非常簡(jiǎn)單: python -m cProfile filename.py,filename.py 是要運(yùn)行程序的文件名,可以在標(biāo)準(zhǔn)輸出中看到每一個(gè)函數(shù)被調(diào)用的次數(shù)和運(yùn)行的時(shí)間,從而找到程序的性能瓶頸,然后可以有針對(duì)性地優(yōu)化。
?

非常好我支持^.^

(0) 0%

不好我反對(duì)

(0) 0%

      發(fā)表評(píng)論

      用戶評(píng)論
      評(píng)價(jià):好評(píng)中評(píng)差評(píng)

      發(fā)表評(píng)論,獲取積分! 請(qǐng)遵守相關(guān)規(guī)定!

      ?