chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費注冊]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>數(shù)值算法/人工智能>

一種多分類的AdaBoost算法

大?。?/span>0.86 MB 人氣: 2017-12-01 需要積分:1

  多類指數(shù)損失函數(shù)逐步添加模型( SAMME)是一種多分類的AdaBoost算法,為進一步提升SAMME算法的性能,針對使用加權概率和偽損失對算法的影響進行研究,在此基礎上提出了一種基于基分類器對樣本有效鄰域分類的動態(tài)加權AdaBoost算法SAMME. RD。首先,確定是否使用加權概率和偽損失;然后,求出待測樣本在訓練集中的有效鄰域;最后,根據(jù)基分類器針對有效鄰域的分類結果確定基分類器的加權系數(shù)。使用UCI數(shù)據(jù)集進行驗證,實驗結果表明:使用真實的錯誤率計算基分類器加權系數(shù)效果更好;在數(shù)據(jù)類別較少且分布平衡時,使用真實概率進行基分類器篩選效果較好;在數(shù)據(jù)類別較多且分布不平衡時,使用加權概率進行基分類器篩選效果較好。所提的SAMME. RD算法可以有效提高多分類AdaBoost算法的分類正確率。
?

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發(fā)表評論

      用戶評論
      評價:好評中評差評

      發(fā)表評論,獲取積分! 請遵守相關規(guī)定!

      ?