曰本美女∴一区二区特级A级黄色大片, 国产亚洲精品美女久久久久久2025, 页岩实心砖-高密市宏伟建材有限公司, 午夜小视频在线观看欧美日韩手机在线,国产人妻奶水一区二区,国产玉足,妺妺窝人体色WWW网站孕妇,色综合天天综合网中文伊,成人在线麻豆网观看

您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費注冊]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>數(shù)值算法/人工智能>

基于標記與特征依賴最大化的弱標記集成分類

大?。?/span>1.28 MB 人氣: 2017-12-25 需要積分:1

  弱標記學(xué)習是多標記學(xué)習的一個重要分支,近幾年已被廣泛研究并被應(yīng)用于多標記樣本的缺失標記補全和預(yù)測等問題.然而,針對特征集合較大、更容易擁有多個語義標記和出現(xiàn)標記缺失的高維數(shù)據(jù)問題,現(xiàn)有弱標記學(xué)習方法普遍易受這類數(shù)據(jù)包含的噪聲和冗余特征的干擾.為了對高維多標記數(shù)據(jù)進行準確的分類。提出了一種基于標記與特征依賴最大化的弱標記集成分類方法EnWL.EnWL首先在高維數(shù)據(jù)的特征空間多次利用近鄰傳播聚類方法,每次選擇聚類中心構(gòu)成具有代表性的特征子集,降低噪聲和冗余特征的干擾;再在每個特征子集上訓(xùn)練一個基于標記與特征依賴最大化的半監(jiān)督多標記分類器;最后,通過投票集成這些分類器實現(xiàn)多標記分類.在多種高維數(shù)據(jù)集上的實驗結(jié)果表明。EnWL在多種評價度量上的預(yù)測性能均優(yōu)于已有相關(guān)方法。

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發(fā)表評論

      用戶評論
      評價:好評中評差評

      發(fā)表評論,獲取積分! 請遵守相關(guān)規(guī)定!

      ?