chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

你們知道深度學習框架制造原理嗎

新機器視覺 ? 來源:易學教程 ? 作者: 帥比萌擦擦 ? 2021-06-19 09:37 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

新一代人工智能技術的發(fā)展,離不的兩大基礎是:芯片、深度學習框架,隨著中國科研創(chuàng)新能力的提升,這兩方面技術取得了大量的突破。

當然,這也是一種技術封鎖的倒逼,去年出現的華為芯片供應鏈被全面封鎖,和工科神器MATLAB被禁事件,這兩件事情加起來,迫使我國要從基礎架構平臺到應用系統(tǒng)等,全方位建設自主知識的優(yōu)秀產品。

01

發(fā) 展

作為人工智能的核心技術,深度學習來說,無論是學術領域、還是工業(yè)領域,均發(fā)揮著十分重要的作用。

過去十年,深度學習領域涌現了大量算法和應用。在這些深度學習算法和應用涌現的背后,是各種各樣的深度學習工具和框架。TensorFlow 和 PyTorch 等深度學習框架是機器學習革命的腳手架,它們的廣發(fā)使用,使得許多從業(yè)者能夠使用適合領域特定編程語言,和豐富構建模塊,以便于更容易地組裝模型。

回顧深度學習框架的演變,深度學習框架和深度學習算法之間的緊密耦合關,讓我們知道了這種,互依賴良性循環(huán),推動了深度學習框架和工具的快速發(fā)展。

02

趨 勢

我們正在處于一場人工智能革命的黎明,人工智能領域的新研究和應用框架,正在以前所未有的速度涌現。

八、九年前的AlexNet 網絡,只包含了大概6000 萬個參數,而 GPT-3 網絡竟然包含了 1750 億參數,網絡規(guī)模在短短不到十年的時間,迅猛增加了 3000 倍。但我們要知道,人類的大腦包含了100萬億個突觸,也就相當于100萬億參數。所以,神經網絡要達到人類的智能水平還有很大的差距。

這種難以接受的網絡規(guī)模,對現有的模型訓練和推理的硬件、軟件計算效率都提出了很大的挑戰(zhàn)。未來的深度學習框架很可能是算法、高性能計算、硬件加速器和分布式系統(tǒng)的跨學科成果。

03

挑 戰(zhàn)

然而,對于深度學習相關的初學者,還是對于已經從事相關工作的算法工程師來說,深度學習理論太難學,開發(fā)過程太復雜,又將許多人拒之于深度學習的門外。

而大廠等一線企業(yè)在這方面的需求也是迫在眉睫,阿里云也正式開深,是業(yè)界首個面向NLP場景的深度遷移學習框架。人才渴求之大,人才缺口異常嚴峻。

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    460

    文章

    52520

    瀏覽量

    441037
  • 人工智能
    +關注

    關注

    1807

    文章

    49029

    瀏覽量

    249581
  • 深度學習
    +關注

    關注

    73

    文章

    5561

    瀏覽量

    122799

原文標題:詳解深度學習框架制造原理

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    百度飛槳框架3.0正式版發(fā)布

    大模型訓練成本高?推理效率低?硬件適配難? 4月1日,百度發(fā)布 飛槳框架3.0正式版 !五大特性專為大模型設計。 作為大模型時代的Infra“基礎設施”,深度學習框架的重要性愈發(fā)凸顯,
    的頭像 發(fā)表于 04-02 19:03 ?726次閱讀
    百度飛槳<b class='flag-5'>框架</b>3.0正式版發(fā)布

    嵌入式AI技術之深度學習:數據樣本預處理過程中使用合適的特征變換對深度學習的意義

    ? 作者:蘇勇Andrew 使用神經網絡實現機器學習,網絡的每個層都將對輸入的數據做一次抽象,多層神經網絡構成深度學習框架,可以深度理解數
    的頭像 發(fā)表于 04-02 18:21 ?888次閱讀

    如何排除深度學習工作臺上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學習工作臺上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    軍事應用中深度學習的挑戰(zhàn)與機遇

    人工智能尤其是深度學習技術的最新進展,加速了不同應用領域的創(chuàng)新與發(fā)展。深度學習技術的發(fā)展深刻影響了軍事發(fā)展趨勢,導致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?539次閱讀

    BP神經網絡與深度學習的關系

    BP神經網絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經網絡的基本概念 BP神經網絡,即反向傳播神經網絡(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    卷積神經網絡的實現工具與框架

    卷積神經網絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發(fā)展,多種實現工具和框架應運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發(fā)展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發(fā)表于 11-14 15:17 ?1919次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?659次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?1382次閱讀

    激光雷達技術的基于深度學習的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領域具有廣泛的應用前景。 二、深度學習技術的發(fā)展 深度學習是機器學習的一個分支,它通過模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1071次閱讀

    FPGA加速深度學習模型的案例

    FPGA(現場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPGA的AlexNet卷積運算加速 項目名稱
    的頭像 發(fā)表于 10-25 09:22 ?1235次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2900次閱讀

    深度學習GPU加速效果如何

    圖形處理器(GPU)憑借其強大的并行計算能力,成為加速深度學習任務的理想選擇。
    的頭像 發(fā)表于 10-17 10:07 ?617次閱讀

    FPGA做深度學習能走多遠?

    。FPGA的優(yōu)勢就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學習未來會怎樣發(fā)展,能走多遠,你怎么看。 A:FPGA 在深度
    發(fā)表于 09-27 20:53

    NVIDIA推出全新深度學習框架fVDB

    在 SIGGRAPH 上推出的全新深度學習框架可用于打造自動駕駛汽車、氣候科學和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?1151次閱讀