chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

數(shù)坤科技3D卷積神經(jīng)網(wǎng)絡(luò)模型用于肝臟MR圖像的精準(zhǔn)分割

科技綠洲 ? 來源:數(shù)坤科技 ? 作者:數(shù)坤科技 ? 2022-04-02 16:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

對肝臟MR圖像進(jìn)行高效、精準(zhǔn)的分割,是肝臟疾病智能診斷治療的基礎(chǔ)。此前,在國際上,基于深度學(xué)習(xí)、全自動(dòng)進(jìn)行肝臟磁共振圖像分割的研究很少見。

近日,首都醫(yī)科大學(xué)附屬北京友誼醫(yī)院楊正漢教授團(tuán)隊(duì)與數(shù)坤科技聯(lián)合開展的研究,填補(bǔ)了該領(lǐng)域的空白。研究論文《Automated segmentation of liver segment on portal venous phase MRimages using a 3D convolutional neural network》發(fā)表于全球權(quán)威的醫(yī)學(xué)影像雜志《Insights into Imaging》(IF 5.179)。《Insights into Imaging》由歐洲放射學(xué)會(huì) (ESR) 創(chuàng)立,是臨床影像相關(guān)教育及最新研究領(lǐng)域具有領(lǐng)先地位的一本期刊。

該項(xiàng)研究采用了基于多序列的3D卷積神經(jīng)網(wǎng)絡(luò)模型,由數(shù)坤科技自主研發(fā),用于肝臟MR圖像的精準(zhǔn)分割。

poYBAGJIA5yABIgJAACQgGEDMD4636.png

肝臟分割模型的網(wǎng)絡(luò)結(jié)構(gòu)

結(jié)論顯示,該模型可作為肝臟MR圖像自動(dòng)分割標(biāo)注的有效工具,且對于不同廠家及不同場強(qiáng)的MRI設(shè)備采集的肝臟圖像及不同肝背景均有穩(wěn)健的表現(xiàn)。該模型為AI智能輔助肝臟疾病MRI診斷奠定了堅(jiān)實(shí)的基礎(chǔ),對于精準(zhǔn)手術(shù)計(jì)劃及預(yù)后判斷將具有重要的臨床意義。

pYYBAGJIA7GALxxZAACOaou_UP4017.png

模型應(yīng)用于不同MR設(shè)備圖像的質(zhì)量評估,結(jié)果顯示該模型適用于不同廠家及不同場強(qiáng)的MRI設(shè)備。

肝臟MRI智能化挑戰(zhàn)

需求強(qiáng)、難度高、研究少

慢性肝病影響著全球數(shù)以千萬計(jì)的人群,各種慢性肝病如未能得到有效控制,將逐漸進(jìn)展直至終末期肝病,這些患者又都是肝臟腫瘤的高危人群。中國超過五分之一的人群受到肝臟疾病的困擾。

MRI檢查具有多方位、多參數(shù)、高軟組織分辨力的成像優(yōu)勢,已成為常用的肝臟影像學(xué)檢查方法。肝臟的精準(zhǔn)分割,是肝臟疾病鑒別診斷、精準(zhǔn)手術(shù)規(guī)劃及預(yù)后判斷的基礎(chǔ)。

在影像診斷環(huán)節(jié),肝臟及病灶的精準(zhǔn)分割,可幫助醫(yī)生發(fā)現(xiàn)病灶、精準(zhǔn)定位并提取其影像特征。手術(shù)環(huán)節(jié),術(shù)前需對肝臟的結(jié)構(gòu)、肝內(nèi)病灶等進(jìn)行整體性評估,以幫助肝膽外科醫(yī)生精準(zhǔn)有效切除病灶,盡可能減少對殘余肝臟的損害,為患者帶來最大遠(yuǎn)期利益。

對于肝臟MR圖像的分割,通常由放射醫(yī)生通過人眼識別、手工分割完成,不僅工作繁瑣、耗費(fèi)人力、時(shí)間,且結(jié)果會(huì)因?yàn)獒t(yī)生個(gè)體差異而導(dǎo)致分割結(jié)果的差異。另外,肝臟自身解剖學(xué)結(jié)構(gòu)復(fù)雜,手術(shù)史、腫瘤壓迫或肝硬化等原因造成肝臟實(shí)質(zhì)及管道系統(tǒng)的變異,及肝臟MRI增強(qiáng)掃描多達(dá)1000~3000幅圖像數(shù)量,都為智能分割帶來了一定困難。

過去20年中,科學(xué)家已經(jīng)開展了計(jì)算機(jī)輔助肝臟分割的研究,但其中大部分使用的是傳統(tǒng)機(jī)器學(xué)習(xí)的技術(shù),在效率和準(zhǔn)確率上無法滿足臨床需求。臨床亟需一種能自動(dòng)、準(zhǔn)確進(jìn)行肝臟分割的智能化工具。

AI在肝臟MRI應(yīng)用潛能廣闊

效率提升195倍,精準(zhǔn)助力手術(shù)規(guī)劃及預(yù)后

這項(xiàng)研究評估了一種使用深度神經(jīng)網(wǎng)絡(luò)的自動(dòng)化肝臟分割方法,該方法分別使用 367、157 和158 例門靜脈期 MR 圖像進(jìn)行訓(xùn)練、驗(yàn)證和測試。研究數(shù)據(jù)結(jié)果顯示,該模型在Dice相似系數(shù)(DSC)、平均表面距離(MSD)、豪斯多夫距離(HD)、容積率(RV)這四個(gè)指標(biāo)上表現(xiàn)出高準(zhǔn)確性(分別為0.920、3.34、3.61、1.01)。與手動(dòng)分割相比,該模型將分割時(shí)間從26分鐘大幅縮短至8秒,效率提升了195倍。

在圖像分割的質(zhì)量評估上,基于該自動(dòng)化分割模型,高質(zhì)量分割圖像占比高達(dá)79%,中等質(zhì)量分割圖像占比達(dá)15%,中高質(zhì)量分割圖像合計(jì)占比達(dá)到94%。

在間接評估中,僅基于模型自動(dòng)分割的結(jié)果就可以將 93.4% (99/106) 的病灶分配到正確的肝段。

pYYBAGJIA8uAR5mZAAH87AG6z6U540.png

間接評估樣例

深度學(xué)習(xí)的肝臟分割具有自動(dòng)化、智能化、標(biāo)準(zhǔn)化的特點(diǎn),解決了依照個(gè)人經(jīng)驗(yàn)而導(dǎo)致同質(zhì)化水平低的問題。且精準(zhǔn)的肝臟分割,是肝臟病變智能診斷的基礎(chǔ);也為肝膽外科醫(yī)生進(jìn)行手術(shù)規(guī)劃、預(yù)后判斷的智能化提供了可能。

該模型不僅填補(bǔ)了利用深度學(xué)習(xí)全自動(dòng)、智能進(jìn)行肝臟MR圖像分割的研究空白,更對于肝臟疾病的精準(zhǔn)診療具有重要臨床意義。

審核編輯:彭菁
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4825

    瀏覽量

    106746
  • AI
    AI
    +關(guān)注

    關(guān)注

    89

    文章

    38012

    瀏覽量

    295999
  • 數(shù)坤科技
    +關(guān)注

    關(guān)注

    0

    文章

    5

    瀏覽量

    3064
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    自動(dòng)駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)是個(gè)啥?

    在自動(dòng)駕駛領(lǐng)域,經(jīng)常會(huì)聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)
    的頭像 發(fā)表于 11-19 18:15 ?1812次閱讀
    自動(dòng)駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是個(gè)啥?

    一些神經(jīng)網(wǎng)絡(luò)加速器的設(shè)計(jì)優(yōu)化方案

    加以后的部分和 psum 保留,直到完成整個(gè) 2D3D 滑動(dòng)窗口計(jì)算再寫入內(nèi)存,最多復(fù)用 R*R*C 次,完成一個(gè)輸出特征圖像素。 l 輸入固定 Input Stationary (IS):輸入
    發(fā)表于 10-31 07:14

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測試

    CNN算法簡介 我們硬件加速器的模型為Lenet-5的變型,網(wǎng)絡(luò)粗略分共有7層,細(xì)分共有13層。包括卷積,最大池化層,激活層,扁平層,全連接層。下面是各層作用介紹: 卷積層:提取
    發(fā)表于 10-29 07:49

    NMSISI庫的使用

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 07:07

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能
    發(fā)表于 10-29 06:08

    構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議

    整個(gè)模型非常巨大。所以要想實(shí)現(xiàn)輕量級的CNN神經(jīng)網(wǎng)絡(luò)模型,首先應(yīng)該避免嘗試單層神經(jīng)網(wǎng)絡(luò)。 2)減少卷積核的大小:CNN
    發(fā)表于 10-28 08:02

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型用于手寫數(shù)字識別。一旦模型
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來需要使用擴(kuò)展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對第一層卷積+池化的部署進(jìn)行說明,其余層與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重?cái)?shù)據(jù)、輸入數(shù)據(jù)導(dǎo)入硬件加速器內(nèi)。對于權(quán)重
    發(fā)表于 10-20 08:00

    基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真模型解決方案

    在基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真(DPD)模型中,使用不同的激活函數(shù)對整個(gè)系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?3033次閱讀

    自動(dòng)駕駛感知系統(tǒng)中卷積神經(jīng)網(wǎng)絡(luò)原理的疑點(diǎn)分析

    背景 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)的核心技術(shù)主要包括以下幾個(gè)方面:局部連接、權(quán)值共享、多卷積核以及池化。這些技術(shù)共同作用,使得CNN在
    的頭像 發(fā)表于 04-07 09:15 ?630次閱讀
    自動(dòng)駕駛感知系統(tǒng)中<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>原理的疑點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?1284次閱讀

    BP神經(jīng)網(wǎng)絡(luò)圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達(dá),適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:12 ?1164次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個(gè)階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?1435次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 01-09 10:24 ?2224次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    通道數(shù)時(shí)表現(xiàn)更好。 2.3 神經(jīng)網(wǎng)絡(luò)的相關(guān)知識點(diǎn) 2.3.1 卷積的基本概念 卷積是一種數(shù)學(xué)運(yùn)算,在計(jì)算機(jī)視覺中被廣泛應(yīng)用于特征提取。它通過
    發(fā)表于 12-19 14:33