chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

康謀分享|aiSim5基于生成式AI擴(kuò)大仿真測試范圍(終)

康謀自動(dòng)駕駛 ? 2024-05-22 13:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在前面的幾章節(jié)中探討了aiSim仿真合成數(shù)據(jù)的置信度,此外在場景重建和測試流程閉環(huán)的過程中,難免會(huì)面臨3D場景制作重建耗時(shí)長、成本高、擴(kuò)展性低以及交通狀況復(fù)雜程度難以滿意等問題,當(dāng)前的主要挑戰(zhàn)在于如何自動(dòng)化生成3D靜態(tài)場景并添加動(dòng)態(tài)實(shí)例編輯,從而有效縮短測試流程,擴(kuò)大仿真測試范圍。

wKgaomZNiUGACH0zAABL0_0fsNQ18.jpeg?source=d16d100b圖1:實(shí)際圖像wKgaomZNiUGABH0wAAA-X-ccnfA280.jpg?source=d16d100b圖2:NeRF重建場景

對(duì)于3D重建,目前主要的兩種解決方案為NeRF和3DGS。

一、NeRF

1、神經(jīng)輻射場(Neural Radiance Fields)

NeRF是將三維空間中的每個(gè)點(diǎn)的顏色和密度信息編碼為一個(gè)連續(xù)的函數(shù)并由MLP參數(shù)化。給定一個(gè)視角和三維空間中的點(diǎn),NeRF可以預(yù)測該點(diǎn)的顏色和沿視線方向的密度分布。通過對(duì)這些信息進(jìn)行體積渲染,NeRF能夠合成出新視角下的圖像。

wKgZomZNiUWAZUeYARW_QeIaDmI089.gif?source=d16d100b

2、優(yōu)勢

高保真輸出。

  • 基于NerFStudio提供了較為友好地代碼庫。
  • 相對(duì)較快的訓(xùn)練時(shí)間。
  • 對(duì)于待重建區(qū)域具有可擴(kuò)展性。

3、不足及主要挑戰(zhàn)

渲染速度緩慢。NeRF需要沿著從相機(jī)到場景的每條光線進(jìn)行大量的采樣和計(jì)算,以準(zhǔn)確估計(jì)場景的體積密度和顏色。這個(gè)過程計(jì)算密集,在NVIDIA A100上進(jìn)行了測試,全HD分辨率下,渲染一張圖像大約需要10s。

場景深度估計(jì)效果不理想。NeRF通過體積渲染隱式地學(xué)習(xí)了場景的深度信息,但這種深度信息通常是與場景的顏色和密度信息耦合在一起的。這意味著,如果場景中存在遮擋或非朗伯(non-Lambertian)反射等復(fù)雜情況,NeRF可能難以準(zhǔn)確估計(jì)每個(gè)像素的深度。

wKgaomZNiUKAGoKzAAHdHVYkELY10.jpeg?source=d16d100b

近距離物體重建質(zhì)量可能較低。這可能是由視角和分辨率不足、深度估計(jì)不夠準(zhǔn)確以及運(yùn)動(dòng)模糊遮擋等問題造成的。

wKgZomZNiUGAL9jqAAAyc4PLlrM00.jpeg?source=d16d100b

高FOV相機(jī)校準(zhǔn)不完善導(dǎo)致的重影偽影。

wKgZomZNiUKAUsgGAAA9O87Ifug74.jpeg?source=d16d100b

當(dāng)然為了解決這些問題研究人員通過引入深度正則化來提升NeRF深度估計(jì)的準(zhǔn)確性和穩(wěn)定性,通過優(yōu)化NeRF的結(jié)構(gòu)和算法提升渲染速度。

二、3DGS

1、3D高斯?jié)姙R(3D Gaussian Splatting)

3DGS采用三維高斯分布來表示場景中的點(diǎn)云數(shù)據(jù),每個(gè)點(diǎn)用一個(gè)具有均值和協(xié)方差的高斯函數(shù)來描述。通過光柵化渲染高斯函數(shù),從而生成逼真的3D場景圖像。

wKgaomZNiUaAfO9xARF-jfd6tiw046.gif?source=d16d100b

2、優(yōu)勢

訓(xùn)練時(shí)間短。

近似于實(shí)時(shí)的渲染。

提供高保真的輸出。

3、不足及主要挑戰(zhàn)

代碼庫友好度較低。相比于NeRFStudio,文檔的完善程度和易用性較低。

初始點(diǎn)云獲取需求高,需要精確的傳感器和復(fù)雜的數(shù)據(jù)處理流程,否則將會(huì)對(duì)3DGS的性能產(chǎn)生明顯的影響。

wKgaomZNiUKAWR4mAABabi0v3BU54.jpeg?source=d16d100b

深度估計(jì)同樣不足,主要可能有幾個(gè)原因:在優(yōu)化過程中傾向于獨(dú)立優(yōu)化每個(gè)高斯點(diǎn),導(dǎo)致在少量圖像下出現(xiàn)過擬合;由于缺乏全局的幾何信息,導(dǎo)致在大型場景下或復(fù)雜幾何結(jié)構(gòu)重建時(shí)深度估計(jì)不準(zhǔn)確;初始點(diǎn)云的深度信息不夠準(zhǔn)確等。

wKgZomZNiUKAF8BbAAAtPgDvA8Y59.jpeg?source=d16d100b

相機(jī)模型支持受限。目前3DGS主要支持針孔相機(jī)模型,雖然理論上可以推導(dǎo)出其他相機(jī)模型的3DGS版本,但還需要后續(xù)的實(shí)驗(yàn)驗(yàn)證其有效性和準(zhǔn)確性。

重建區(qū)域可擴(kuò)展受限,主要是缺乏LiDAR覆蓋區(qū)域之外的幾何信息導(dǎo)致的不完整重建以及大型城市場景重建的大量計(jì)算。

wKgZomZNiUKAMjSwAABg5f2-Rmc20.jpeg?source=d16d100b

集成和資源密集的挑戰(zhàn),目前3DGS集成通常依賴Python接口;3DGS在運(yùn)行時(shí)可能會(huì)占用大量的VRAM。

通過優(yōu)化超參數(shù)和采用新方法,如Scaffold-GS,可能有助于減少內(nèi)存需求,提高在大型場景下的處理能力。

三、操作方法

1、訓(xùn)練流程

第一步:輸入——相機(jī)視頻數(shù)據(jù);自車運(yùn)動(dòng)數(shù)據(jù);校準(zhǔn)數(shù)據(jù);用于深度正則化的LiDAR點(diǎn)云數(shù)據(jù);

第二步:移除動(dòng)態(tài)對(duì)象:創(chuàng)建分割圖來識(shí)別和遮罩圖像中的不同對(duì)象和區(qū)域;對(duì)動(dòng)態(tài)對(duì)象進(jìn)行自動(dòng)注釋*(康謀aiData工具鏈);

wKgaomZNiUKAPHj0AABR3iDpRRw00.jpeg?source=d16d100b

第三步: 進(jìn)行NeRF或Gaussian splatting。

NeRF:

可以使用任何攝像頭模型,示例中使用的是MEI相機(jī)模型;

采用Block-NeRF進(jìn)行大規(guī)模重建;

嵌入不同的氣候條件。

Gaussian splatting:

將輸入的相機(jī)轉(zhuǎn)化為針孔相機(jī)模型;

可以從COLMAP或LiDAR中獲得初始點(diǎn)云;

采用Block-Splatting進(jìn)行大規(guī)模重建。

2、添加動(dòng)態(tài)對(duì)象

在NeRF和3DGS生成靜態(tài)場景后,aiSim5將基于外部渲染API進(jìn)一步增加動(dòng)態(tài)元素,不僅可以重建原始場景,也可以根據(jù)測試需求構(gòu)建不同的交通狀態(tài)。

wKgZomZNiUKAfGjJAAGn0IU-HmY664.png?source=d16d100b

aiSim5中基于NeRF/3DGS場景細(xì)節(jié)。

wKgaomZNiUKAcihmAABPlQRBgdM82.jpeg?source=d16d100b圖13:網(wǎng)格投射陰影wKgaomZNiUOAVX_KAABfuuIWSE477.jpeg?source=d16d100b圖14:車下環(huán)境遮蔽

3、效果展示

在aiSim5中完成動(dòng)態(tài)對(duì)象的添加后,可以自由的在地圖場景中更改交通狀態(tài),用于感知/規(guī)控等系統(tǒng)的SiL/HiL測試。

wKgaomZNiUuAb-xcAdsV8tb-Pgg460.gif?source=d16d100b圖15:aiSim5運(yùn)行NeRF城市場景1wKgZomZNiUiAR4gGAba78GiRSyk276.gif?source=d16d100b圖16:aiSim5運(yùn)行NeRF城市場景2


作者介紹

崔工

康謀科技仿真測試業(yè)務(wù)技術(shù)主管,擁有超過5年的汽車仿真測試及自動(dòng)駕駛技術(shù)研發(fā)經(jīng)驗(yàn),熟練掌握仿真測試工具和平臺(tái),如aiSim、HEEX等,能有效評(píng)估和優(yōu)化自動(dòng)駕駛系統(tǒng)的性能和安全性。擁有出色的跨文化溝通能力,成功帶領(lǐng)團(tuán)隊(duì)完成多項(xiàng)海外技術(shù)合作項(xiàng)目,加速了公司在自動(dòng)駕駛技術(shù)上的國際化進(jìn)程。作為技術(shù)團(tuán)隊(duì)的核心,領(lǐng)導(dǎo)并實(shí)施過大規(guī)模的自動(dòng)駕駛仿真測試項(xiàng)目,對(duì)于車輛行為建模、環(huán)境模擬以及故障診斷具有獨(dú)到見解。擅長運(yùn)用大數(shù)據(jù)分析和人工智能技術(shù),優(yōu)化仿真測試流程,提高測試效率和結(jié)果的準(zhǔn)確性。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 測試
    +關(guān)注

    關(guān)注

    8

    文章

    6013

    瀏覽量

    130630
  • 仿真測試
    +關(guān)注

    關(guān)注

    0

    文章

    108

    瀏覽量

    11748
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    791

    文章

    14656

    瀏覽量

    176096
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    深度解析:雙模態(tài)仿真測試解決方案!

    隨著端到端自動(dòng)駕駛架構(gòu)的興起,傳統(tǒng)基于規(guī)則的仿真測試正面臨“真實(shí)感不足”與“場景泛化難”的雙重挑戰(zhàn)。本文深入解析推出的雙模態(tài)仿真
    的頭像 發(fā)表于 11-21 17:32 ?7417次閱讀
    深度解析:<b class='flag-5'>康</b><b class='flag-5'>謀</b>雙模態(tài)<b class='flag-5'>仿真</b><b class='flag-5'>測試</b>解決方案!

    高保真自動(dòng)駕駛仿真軟件對(duì)比:全球首款A(yù)SIL-D認(rèn)證平臺(tái)aiSim的技術(shù)突破

    科技推出的 aiSim端到端仿真平臺(tái) ,通過"虛擬場景無限生成+虛實(shí)閉環(huán)融合"方案,將極端場景覆蓋率提升至95%,為自動(dòng)駕駛安全落地
    的頭像 發(fā)表于 11-18 17:59 ?294次閱讀

    端到端智駕模擬軟件推薦——為什么選擇Keymotek的aiSim?

    的訓(xùn)練、驗(yàn)證和安全測試,高置信度、高保真的模擬平臺(tái)至關(guān)重要。Keymotek(科技)的aiSim就是一款前瞻性、技術(shù)領(lǐng)先的智駕模擬軟件。
    的頭像 發(fā)表于 11-18 11:35 ?522次閱讀

    新聞 | 實(shí)力認(rèn)證!aiSim榮獲ASAM“自動(dòng)駕駛仿真技術(shù)獎(jiǎng)”

    、零部件供應(yīng)商、科技公司及行業(yè)專家,共探先進(jìn)數(shù)據(jù)與仿真技術(shù)融合、ASAM國際標(biāo)準(zhǔn)應(yīng)用等核心熱點(diǎn)。受邀參會(huì)并深度參與交流,憑借技術(shù)硬實(shí)力斬獲“自動(dòng)駕駛仿真技術(shù)獎(jiǎng)”,盡
    的頭像 發(fā)表于 11-11 17:33 ?1887次閱讀
    <b class='flag-5'>康</b><b class='flag-5'>謀</b>新聞 | 實(shí)力認(rèn)證!<b class='flag-5'>康</b><b class='flag-5'>謀</b><b class='flag-5'>aiSim</b>榮獲ASAM“自動(dòng)駕駛<b class='flag-5'>仿真</b>技術(shù)獎(jiǎng)”

    aiSim 攜經(jīng)緯恒潤煥新 HIL 測試,誠邀集成商共建生態(tài)!

    在智能駕駛從“模塊化”邁向“端到端”的技術(shù)浪潮中,高保真、全鏈路的仿真測試已成為行業(yè)剛需。科技推出的aiSim端到端智駕
    的頭像 發(fā)表于 10-28 17:32 ?210次閱讀
    <b class='flag-5'>康</b><b class='flag-5'>謀</b> <b class='flag-5'>aiSim</b> 攜經(jīng)緯恒潤煥新 HIL <b class='flag-5'>測試</b>,誠邀集成商共建生態(tài)!

    新聞 | 與Robotec.ai正式建立合作伙伴關(guān)系!

    我們很高興地宣布:與Robotec.ai正式建立合作伙伴關(guān)系,負(fù)責(zé)該品牌及產(chǎn)品在中國地區(qū)的銷售和售后服務(wù),此次合作旨在通過整合雙方的技術(shù)專長和市場資源,共同推動(dòng)機(jī)器人和自動(dòng)駕駛領(lǐng)域的技術(shù)創(chuàng)新
    的頭像 發(fā)表于 09-08 17:44 ?2821次閱讀
    <b class='flag-5'>康</b><b class='flag-5'>謀</b>新聞 | <b class='flag-5'>康</b><b class='flag-5'>謀</b>與Robotec.<b class='flag-5'>ai</b>正式建立合作伙伴關(guān)系!

    新聞 | 加入ASAM組織,全球首個(gè)ASIL-D認(rèn)證自動(dòng)駕駛仿真平臺(tái)aiSim引領(lǐng)安全新標(biāo)桿

    !ASAM作為國際汽車行業(yè)標(biāo)準(zhǔn)化領(lǐng)域的權(quán)威機(jī)構(gòu),致力于推動(dòng)仿真測試及數(shù)據(jù)交互的標(biāo)準(zhǔn)化進(jìn)程。此次加入,標(biāo)志著在自動(dòng)駕駛仿真技術(shù)領(lǐng)域的創(chuàng)新
    的頭像 發(fā)表于 08-29 16:57 ?817次閱讀
    <b class='flag-5'>康</b><b class='flag-5'>謀</b>新聞 | <b class='flag-5'>康</b><b class='flag-5'>謀</b>加入ASAM組織,全球首個(gè)ASIL-D認(rèn)證自動(dòng)駕駛<b class='flag-5'>仿真</b>平臺(tái)<b class='flag-5'>aiSim</b>引領(lǐng)安全新標(biāo)桿

    生成 AI 重塑自動(dòng)駕駛仿真:4D 場景生成技術(shù)的突破與實(shí)踐

    生成AI驅(qū)動(dòng)的4D場景技術(shù)正解決傳統(tǒng)方法效率低、覆蓋不足等痛點(diǎn),如何通過NeRF、3D高斯?jié)姙R等技術(shù)實(shí)現(xiàn)高保真動(dòng)態(tài)建模?高效生成極端天氣等長尾場景?本文為您系統(tǒng)梳理
    的頭像 發(fā)表于 08-06 11:20 ?4733次閱讀
    <b class='flag-5'>生成</b><b class='flag-5'>式</b> <b class='flag-5'>AI</b> 重塑自動(dòng)駕駛<b class='flag-5'>仿真</b>:4D 場景<b class='flag-5'>生成</b>技術(shù)的突破與實(shí)踐

    加入ASAM組織,自動(dòng)駕駛仿真平臺(tái)aiSim引領(lǐng)安全新標(biāo)桿

    科技正式加入全球汽車標(biāo)準(zhǔn)化組織 ASAM(Association for Standardization of Automation and Measuring Systems),成為其正式會(huì)員單位!
    的頭像 發(fā)表于 07-09 16:53 ?501次閱讀
    <b class='flag-5'>康</b><b class='flag-5'>謀</b>加入ASAM組織,自動(dòng)駕駛<b class='flag-5'>仿真</b>平臺(tái)<b class='flag-5'>aiSim</b>引領(lǐng)安全新標(biāo)桿

    分享 | 自動(dòng)駕駛仿真進(jìn)入“標(biāo)準(zhǔn)時(shí)代”:aiSim全面對(duì)接ASAM OpenX

    自動(dòng)駕駛領(lǐng)域,仿真與標(biāo)準(zhǔn)接口至關(guān)重要。aiSim集成ASAM OpenX系列標(biāo)準(zhǔn),通過OpenDRIVE、OpenSCENARIO等五大標(biāo)準(zhǔn),全面優(yōu)化
    的頭像 發(fā)表于 05-14 10:38 ?3322次閱讀
    <b class='flag-5'>康</b><b class='flag-5'>謀</b>分享 | 自動(dòng)駕駛<b class='flag-5'>仿真</b>進(jìn)入“標(biāo)準(zhǔn)時(shí)代”:<b class='flag-5'>aiSim</b>全面對(duì)接ASAM OpenX

    分享 | 3DGS:革新自動(dòng)駕駛仿真場景重建的關(guān)鍵技術(shù)

    3DGS技術(shù)為自動(dòng)駕駛仿真場景重建帶來突破,通過3D高斯點(diǎn)精確表達(dá)復(fù)雜場景的幾何和光照特性,顯著提升渲染速度與圖像質(zhì)量。aiSim平臺(tái)結(jié)合3DGS,提供高保真虛擬環(huán)境與動(dòng)態(tài)交通流模
    的頭像 發(fā)表于 03-05 09:45 ?4643次閱讀
    <b class='flag-5'>康</b><b class='flag-5'>謀</b>分享 | 3DGS:革新自動(dòng)駕駛<b class='flag-5'>仿真</b>場景重建的關(guān)鍵技術(shù)

    方案 | 基于AI自適應(yīng)迭代的邊緣場景探索方案

    測試 ADAS/AD 系統(tǒng)時(shí),傳統(tǒng) DoE 方法難以覆蓋駕駛邊緣場景,影響自動(dòng)駕駛性能提升。 aiSim集成的aiFab方案,以貝葉斯優(yōu)化為核心,依據(jù)碰撞時(shí)間等關(guān)鍵指標(biāo),快速定位高
    的頭像 發(fā)表于 02-26 09:45 ?3271次閱讀
    <b class='flag-5'>康</b><b class='flag-5'>謀</b>方案 | 基于<b class='flag-5'>AI</b>自適應(yīng)迭代的邊緣場景探索方案

    聚云科技榮獲亞馬遜云科技生成AI能力認(rèn)證

    Bedrock等技術(shù),從應(yīng)用范圍、模型選擇、數(shù)據(jù)處理、模型調(diào)優(yōu)到應(yīng)用集成與部署等方面,助力企業(yè)加速生成AI應(yīng)用落地。此外,聚云科技還基于亞馬遜云科技打造RAGPro企業(yè)知識(shí)庫、
    的頭像 發(fā)表于 02-14 16:07 ?676次閱讀

    聚云科技榮獲亞馬遜云科技生成AI能力認(rèn)證 助力企業(yè)加速生成AI應(yīng)用落地

    北京 ——2025 年 2 月 14 日 云管理服務(wù)提供商聚云科技獲得亞馬遜云科技生成AI能力認(rèn)證,利用亞馬遜云科技全托管的生成
    發(fā)表于 02-14 13:41 ?308次閱讀

    生成AI工具好用嗎

    當(dāng)下,生成AI工具正以其強(qiáng)大的內(nèi)容生成能力,為用戶帶來了前所未有的便捷與創(chuàng)新。那么,生成
    的頭像 發(fā)表于 01-17 09:54 ?795次閱讀