chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Imagination發(fā)布最新神經(jīng)網(wǎng)絡(luò)加速器

Dbwd_Imgtec ? 來源:cg ? 2018-12-06 16:09 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

PowerVR Series3NX提供0.6至10 TOPS的單核性能及超過160 TOPS的多核可擴展性,以實現(xiàn)前所未有的計算性能和可擴展性等級。

2018年12月4日 - Imagination Technologies宣布推出其面向人工智能AI)應(yīng)用的最新神經(jīng)網(wǎng)絡(luò)加速器(NNA)架構(gòu)PowerVR Series3NX。基于屢獲殊榮的前代產(chǎn)品,新版Series3NX提供了無與倫比的可擴展性,使系統(tǒng)級芯片(SoC)制造商能夠針對諸如汽車、移動設(shè)備、智能視頻監(jiān)控和物聯(lián)網(wǎng)邊緣設(shè)備等一系列嵌入式市場去優(yōu)化計算能力和性能。

單個Series3NX內(nèi)核的性能可從0.6到10萬億次操作/秒(TOPS),同時其多核實現(xiàn)可擴展到160TOPS以上。得益于包括無損權(quán)重壓縮等架構(gòu)性增強,Series3NX架構(gòu)的性能可在相同的芯片面積上較上一代產(chǎn)品提升40%,使SoC制造商可在性能效率方面提高近60%,且?guī)捫枨蠼档土?5%。

作為Series3NX架構(gòu)的一部分,Imagination還發(fā)布了PowerVR Series3NX-F(Flexible)半導(dǎo)體知識產(chǎn)權(quán)(IP)配置,以提供前所未有的功能性和靈活性平衡,同時還結(jié)合了行業(yè)領(lǐng)先的性能。采用Series3NX-F的客戶可以通過OpenCL框架來實現(xiàn)差異化并為其產(chǎn)品增加價值。

“將AI應(yīng)用于邊緣從而去創(chuàng)造更強大、更自主,更易于使用的設(shè)備潛藏著巨大機遇?!鼻度胧揭曈X聯(lián)盟(Embedded Vision Alliance)創(chuàng)始人Jeff Bier說道?!霸谠S多這類應(yīng)用中,一個關(guān)鍵的挑戰(zhàn)是實現(xiàn)處理性能、靈活性、成本和功耗的正確組合。我為Imagination Technologies在開發(fā)創(chuàng)新處理器以滿足這些需求而進行的持續(xù)投入點贊?!?/p>

Imagination視覺和人工智能副總裁RussellJames說道:“Series3NX架構(gòu)和Series3NX-F都是不折不扣的創(chuàng)新產(chǎn)品。它們一起帶來了靈活性和可擴展性,同時將性能上限提高了將近一倍。這改變了游戲規(guī)則,可真正推動嵌入式設(shè)備去大規(guī)模采用人工智能?!?/p>

為了迎合快速發(fā)展的市場,新的PowerVR工具也進行了多項擴展,從而能夠最優(yōu)化地去映射新興的網(wǎng)絡(luò)模型、提供靈活性和性能優(yōu)化的理想組合。

通過使用Imagination的專用深度神經(jīng)網(wǎng)絡(luò)(DNN)API,開發(fā)人員可以輕松地針對Series3NX架構(gòu)以及現(xiàn)有PowerVR GPU編寫人工智能應(yīng)用程序。該API可以在多種SoC配置上工作,以便在現(xiàn)有設(shè)備上輕松地完成原型設(shè)計。

Imagination于2017年推出了上一代神經(jīng)網(wǎng)絡(luò)加速器產(chǎn)品PowerVR Series2NX。迄今為止,它已經(jīng)授權(quán)給了多家客戶,主要集中在移動設(shè)備和汽車市場上。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 嵌入式
    +關(guān)注

    關(guān)注

    5186

    文章

    20146

    瀏覽量

    328809
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49734

    瀏覽量

    261509

原文標題:Imagination發(fā)布PowerVR Series3NX神經(jīng)網(wǎng)絡(luò)加速器,為嵌入式人工智能市場帶來多核可擴展性

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    一些神經(jīng)網(wǎng)絡(luò)加速器的設(shè)計優(yōu)化方案

    特征圖保留不變,完成和所有相關(guān)卷積核點積以后再加載,最多復(fù)用 R*R*M 次。 3.不同網(wǎng)絡(luò)模型的效果 如圖所示,后者相對于前者,減少了連線資源和復(fù)雜度。 4.DNN加速器空間架構(gòu)片上存儲
    發(fā)表于 10-31 07:14

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計原理及在MCU200T上仿真測試

    CNN算法簡介 我們硬件加速器的模型為Lenet-5的變型,網(wǎng)絡(luò)粗略分共有7層,細分共有13層。包括卷積,最大池化層,激活層,扁平層,全連接層。下面是各層作用介紹: 卷積層:提取特征?!安蝗?/div>
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    SNN加速器內(nèi)部神經(jīng)元數(shù)據(jù)連接方式

    的數(shù)量級,而且生物軸突的延遲和神經(jīng)元的時間常數(shù)比數(shù)字電路的傳播和轉(zhuǎn)換延遲要大得多,AER 的工作方式和神經(jīng)網(wǎng)絡(luò)的特點相吻合,所以受生物啟發(fā)的神經(jīng)形態(tài)處理中的NoC或SNN
    發(fā)表于 10-24 07:34

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速器上。首先需要將所有權(quán)重數(shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲內(nèi)。 在仿真環(huán)境下,可將其存于一個文件,并在 Verilog 代碼中通過 read
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?700次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    神經(jīng)網(wǎng)絡(luò)的并行計算與加速技術(shù)

    問題。因此,并行計算與加速技術(shù)在神經(jīng)網(wǎng)絡(luò)研究和應(yīng)用中變得至關(guān)重要,它們能夠顯著提升神經(jīng)網(wǎng)絡(luò)的性能和效率,滿足實際應(yīng)用中對快速響應(yīng)和大規(guī)模數(shù)據(jù)處理的需求。神經(jīng)網(wǎng)絡(luò)并行
    的頭像 發(fā)表于 09-17 13:31 ?886次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計算與<b class='flag-5'>加速</b>技術(shù)

    Andes晶心科技推出新一代深度學(xué)習(xí)加速器

    高效能、低功耗 32/64 位 RISC-V 處理核與 AI 加速解決方案的領(lǐng)導(dǎo)供貨商—Andes晶心科技(Andes Technology)今日正式發(fā)表最新深度學(xué)習(xí)加速器 AndesAIRE AnDLA I370。此產(chǎn)品專為
    的頭像 發(fā)表于 08-20 17:43 ?1841次閱讀

    MAX78000采用超低功耗卷積神經(jīng)網(wǎng)絡(luò)加速度計的人工智能微控制技術(shù)手冊

    的Maxim超低功耗微控制相結(jié)合。通過這款基于硬件的卷積神經(jīng)網(wǎng)絡(luò)(CNN)加速器,即使是電池供電的應(yīng)用也可執(zhí)行AI推理,同時功耗僅為微焦耳級。
    的頭像 發(fā)表于 05-08 11:42 ?714次閱讀
    MAX78000采用超低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速</b>度計的人工智能微控制<b class='flag-5'>器</b>技術(shù)手冊

    MAX78002帶有低功耗卷積神經(jīng)網(wǎng)絡(luò)加速器的人工智能微控制技術(shù)手冊

    的Maxim超低功耗微控制相結(jié)合。通過這款基于硬件的卷積神經(jīng)網(wǎng)絡(luò)(CNN)加速器,即使是電池供電的應(yīng)用也可執(zhí)行AI推理,同時功耗僅為微焦耳級。
    的頭像 發(fā)表于 05-08 10:16 ?600次閱讀
    MAX78002帶有低功耗卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>加速器</b>的人工智能微控制<b class='flag-5'>器</b>技術(shù)手冊

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?1307次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1581次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1274次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1340次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?2245次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法