chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費注冊]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>數(shù)值算法/人工智能>

多層次混合的協(xié)同過濾推薦算法

大?。?/span>0.92 MB 人氣: 2018-04-17 需要積分:1

  針對傳統(tǒng)協(xié)同過濾推薦算法在數(shù)據(jù)稀疏的情況下存在的性能缺陷和相似性度量方法的不足,為了提高推薦精度,改進原算法得到了一種基于多層次混合相似度的協(xié)同過濾推薦算法。該算法主要分為三個不同的層次:首先采用模糊集的概念將用戶評分模糊化,計算用戶的模糊偏好,并結(jié)合用戶評分的修正余弦相似度和用戶評分的Jarccad相似度總體作為用戶評分相似度;再對用戶評分進行分類來預測用戶對項目類別的興趣程度,從而計算出用戶興趣相似度;然后利用用戶的特征屬性來預測用戶之間的特征相似度;其次根據(jù)用戶評分數(shù)量來動態(tài)地融合用戶興趣相似度及用戶特征相似度;最后融合三個層次的相似度作為用戶混合相似度的結(jié)果。利用MovieLens公用數(shù)據(jù)集對改進前后的算法進行對比實驗,結(jié)果表明:當在鄰居集合數(shù)量較少時,改進的混合算法相對修正余弦相似度算法的平均絕對偏差( MAE)下降了5%左右;較改進的修正的Jaccard相似性系數(shù)的協(xié)同過濾(MKJCF)算法也存在略微的優(yōu)勢,隨著鄰居集合數(shù)的增加MAE也平均下降了1%左右。該算法采用多層次的推薦策略提高了用戶的推薦精度,有效地緩解了數(shù)據(jù)稀疏性問題和單一度量方法的影響。
?

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發(fā)表評論

      用戶評論
      評價:好評中評差評

      發(fā)表評論,獲取積分! 請遵守相關規(guī)定!

      ?