chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

您好,歡迎來電子發(fā)燒友網(wǎng)! ,新用戶?[免費注冊]

您的位置:電子發(fā)燒友網(wǎng)>源碼下載>通訊/手機編程>

人工智能在ios上的應用

大?。?/span>2.85 MB 人氣: 2017-09-25 需要積分:1

?

?

前言

近幾年來人工智能話題那是炙手可熱。在國內(nèi)很多大佬言必談機器學習和大數(shù)據(jù);在美國剛畢業(yè)的人工智能 PHD 也是眾人追捧,工資直逼 NFL 四分衛(wèi)。人工智能甚至成為了互聯(lián)網(wǎng)領域茶余飯后的話題 —— 仿佛不懂人工智能就是落伍了。

筆者作為一名 iOS 開發(fā)者,對于如火如荼的人工智能和機器學習,也保持了密切的追蹤和了解。這篇文章就是總結我在硅谷和西雅圖的所見所聞,拋磚引玉的與大家分享一下我對于人工智能的思考。

人工智能是什么?

關于人工智能(AI),我們經(jīng)常聽到這樣一些相關詞:大數(shù)據(jù)(Big Data),機器學習(Machine Learning),神經(jīng)網(wǎng)絡(Neural Network)。那么這些詞到底有什么區(qū)別?我們來看下面一則小故事。

從前有個程序員叫牛頓。他定義了一個方法來計算自由落體的速度:

1

2

3  func getVelocity(time t: second) -》 Float {

return 9.8 * t

}

他是怎么得到這個方法的呢?牛頓自己被一個蘋果砸中之后,做了大量的邏輯推導和實驗論證之后,得到了這個公式。這是目前傳統(tǒng)意義上的寫程序方法 -- 理解清楚了事物的內(nèi)在邏輯和真相后,由人來定義方法。直到今天,絕大多數(shù)程序都是這么寫出來的。

而所謂的人工智能,就是機器自己定義方法。人工智能的實現(xiàn)方法有很多,比如可以讓機器來模擬大腦,然后像人一樣思考,從而定義方法。機器學習只是另一種實現(xiàn)人工智能的方法,就是由大數(shù)據(jù)定義方法。假如牛頓時期就有機器學習,它得出自由落體速度的過程是這樣的:

收集盡可能多的自由落體實驗數(shù)據(jù)。假如收集到的數(shù)據(jù)如下

負責人速度 (m/s)時間 (s)

伽利略9.81

牛頓19.62

達芬奇29.43

亞里士多德304

分析數(shù)據(jù)。機器學習會分析出,亞里士多德的數(shù)據(jù)有誤不予采納。其他三人的數(shù)據(jù)滿足同一規(guī)律。

定義方法。根據(jù)上面數(shù)據(jù),機器學習得出結論,速度 = 時間 * 9.8。

隨著數(shù)據(jù)收集得越多,機器學習得到的結論就越準確。其實人類學習的過程也十分類似:書上有大量的知識(加工的數(shù)據(jù)),我們看了之后進行理解思考,然后得出自己的結論。

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發(fā)表評論

      用戶評論
      評價:好評中評差評

      發(fā)表評論,獲取積分! 請遵守相關規(guī)定!

      ?