基于GMR傳感器陣列的生物檢測研究
0? 引? 言
生物傳感器的研究具有巨大的應(yīng)用前景,近年來,隨著電子自旋現(xiàn)象的發(fā)現(xiàn),結(jié)合了半導(dǎo)體微電子工藝制備的GMR設(shè)備,在生物檢測領(lǐng)域引起了人們越來越濃厚的研究興趣,使其成為傳統(tǒng)生物檢測方法的替換方案之一。由于其獨特的物理特性,GMR傳感器比電子傳感器更靈敏、可重復(fù)性強,具有更寬的工作溫度、工作電壓和抗機械沖擊、震動的優(yōu)異性能,而且GMR傳感器的工作點也不會隨時間推移而發(fā)生偏移。GMR傳感器的制備成本和檢測成本低,對樣本的需求量很小。由GMR傳感器組成的陣列,還可以結(jié)合現(xiàn)有的IC工藝,提高整體設(shè)備的集成度,進行多目標(biāo)的檢測。同時,對比傳統(tǒng)的熒光檢測法,磁性標(biāo)記沒有很強的環(huán)境噪聲,標(biāo)記本身不會逐漸消退,也不需要昂貴的光學(xué)掃描設(shè)備以及專業(yè)的操作人員。因此,無論是傳感器本身的性能,還是磁性標(biāo)記的特點,都決定了GMR傳感器陣列在生物檢測領(lǐng)域的研究具有較高的應(yīng)用價值和實踐意義。
1? 巨磁阻陣列傳感器生物檢測的基本原理
1.1? 巨磁阻(GMR)效應(yīng)
1988年派瑞松大學(xué)的研究人員發(fā)現(xiàn)了GMR效應(yīng),這是一種在鐵磁性層與非鐵磁性層交替疊置的結(jié)構(gòu)中觀測到的量子效應(yīng),是指某些磁性或合金材料的磁電阻在一定磁場作用下急劇減小,而△ρ/ρ急劇增大的特性,一般增大的幅度比通常的磁性與合金材料的磁電阻約高10倍。GMR效應(yīng)的理論很復(fù)雜,許多機理至今還不清楚,目前普遍接受的解釋是兩流模型,如圖1所示。多個鐵磁層中的磁矩方向由施加的外磁場控制,當(dāng)鐵磁性層的磁矩反平行排列時見圖1(a),載流子受到的自旋散射最大,多層膜電阻最高;當(dāng)鐵磁性層的磁矩平行排列時見圖1(b),載流子受到的自旋散射最小,多層膜的電阻最低。
目前,按其結(jié)構(gòu)、GMR材料可分為具有層間偶合特性的多層膜(例如Fe/Cr)、自旋閥多層膜(例如FeMn/FeNi/Cu/FeNi)、顆粒型多層膜(例如Fe-Co)和鈣鈦礦氧化物型多層膜(例如AMnO3)等。
1.2? 巨磁阻(GMR)的電子特性
圖2是一個典型的多層GMR材料在外加磁場下的電阻變化情況。圖2中的輸出表明,無論是正向還是反向的外加磁場變化,都能帶來相同的磁阻變化,也就是說GMR效應(yīng)是全極性的。曲線的斜率體現(xiàn)了磁性敏感程度,通常以V(mV)/Oe為單位。當(dāng)阻值不隨磁場繼續(xù)變化時,磁性材料就達到了其磁性飽和區(qū)。兩條曲線中的偏移是磁性材料的磁滯導(dǎo)致的,從零磁場到飽和磁場所帶來的阻值變化就稱為磁阻。
1.3 GMR陣列傳感器生物檢測的基本模式
用GMR陣列傳感器進行生物檢測,是以磁性顆粒為標(biāo)記物,采用直接標(biāo)記法或兩步標(biāo)記法,在施加一定方向的外加磁場的情況下,用磁敏傳感器對磁性標(biāo)記產(chǎn)生的寄生磁場進行檢測,從而實現(xiàn)對生物目標(biāo)定性定量分析。圖3分別介紹了磁性標(biāo)記法檢測的具體步驟:
直接標(biāo)記法? 如圖3(a)所示,直接標(biāo)記法是將標(biāo)記物直接結(jié)合到探針上。首先在傳感器表面結(jié)合特定的生物探針,再將已預(yù)先綁定磁性顆粒的樣本溶液加入傳感器的反應(yīng)池中,溶液中特定的目標(biāo)分子被探針捕獲,完成標(biāo)記。
兩步標(biāo)記法? 如圖3(b)所示,以DNA檢測為例,第一步將已知序列的DNA探針鏈結(jié)合在包埋了自旋閥傳感器的芯片表面,加入用生物素標(biāo)記的DNA目標(biāo)鏈溶液,進行充分雜交;第二步,加入被抗生物素包裹的磁性顆粒,形成生物素一抗生物素共價鍵,從而選擇性地捕獲磁性標(biāo)記。
標(biāo)記反應(yīng)完成后,用外加梯度磁場將未參與標(biāo)記的多余磁性顆粒分離,再施加激勵磁場將磁標(biāo)記(磁性顆粒)磁化,磁化的磁標(biāo)記產(chǎn)生的寄生磁場引起傳感器阻值的變化,從而導(dǎo)致反映生物反應(yīng)的信號輸出。
2 GMR生物檢測系統(tǒng)設(shè)計
當(dāng)前,國際國內(nèi)已經(jīng)開展了基于不同技術(shù)的生物磁場檢測設(shè)備研究,涉及自旋閥傳感器(Spin Valves)、感應(yīng)傳感器(Inductive Sensors)、超導(dǎo)量子干涉儀(SQUIDs)、各向異性磁阻(AMR)環(huán)式傳感器、小規(guī)模的霍耳組合傳感器(Hall Crosses)以及隧道結(jié)(TMR)傳感器等。
1998年,作為美國國防部高級研究規(guī)劃局(DAR-PA)支持項目,美國海軍研究實驗室與NVE公司合作,由David R.Baselt等開展了基于巨磁阻技術(shù)的生物傳感器研究,并設(shè)計制備了兩代GMR傳感器的磁珠陣列計數(shù)器(BARCⅡ,BARCⅢ)進行生物雜交分析,并用于測量在單個分子水平上的DNA-DNA,以及抗體抗原對和受體-配體對的結(jié)合力。德國比勒菲爾德(Bielefeld)大學(xué)、美國佛羅里達州立大學(xué)、美國斯坦福大學(xué)、葡萄牙國立計算機系統(tǒng)與工程研究所(INESC-MN)等研究機構(gòu)也相繼開展了磁性傳感器陣列的生物檢測研究。國內(nèi)多所高校和研究所,如中科院物理研究所、清華大學(xué)、同濟大學(xué)、電子科技大學(xué)、中山大學(xué)等,自2005年起,對巨磁阻生物傳感器陣列設(shè)計、傳感器材料的選取、磁性標(biāo)記與傳感器尺寸關(guān)系、輸出信號處理等方面進行了廣泛的研究,實現(xiàn)了單個納米尺度顆粒的檢測,并申請了相關(guān)的專利。
上述研究中采用的陣列方案和傳感器形態(tài)各異,從布局上可以類分為規(guī)則排列陣列或分區(qū)排列陣列;矩形傳感器或蛇形傳感器。
圖4(a)是Glaanxiong Li等在約7 mm×8 mm的芯片表面上制備的自旋閥傳感器陣列,陣列包含60個亞微米級的條形自旋閥傳感器,呈2個縱列排列,每列30個傳感器單元,每個單元兩頭通過ion束沉積厚約300 nm的鋁作為引線,而中間未被覆蓋的條形區(qū)域作為生物反應(yīng)區(qū),用于感應(yīng)與其易軸同向的磁場分量。
圖4(b)是David R.Baselt等設(shè)計制備的含66個GMR單元的傳感器陣列(BARCⅢ),分為8個反應(yīng)區(qū),每區(qū)8個單元,可進行多路檢測。其單元呈圓形,直徑為200 μm,由長8 mm寬1.6μm的電阻蛇形蜿蜒而成。
通常,整個GMR生物檢測系統(tǒng)由微流部分、GMR陣列、驅(qū)動部分、分析處理部分組成。為了減少外界環(huán)境對傳感器輸出穩(wěn)定性的影響,傳感器單元往往與參考單元一起組成惠斯通電橋。如圖5所示,GMR電阻對組成惠斯通半橋,其中一個電阻表面覆蓋軟磁性屏蔽層,不受外加磁場的影響;另一個電阻作為應(yīng)變電阻,在GMR效應(yīng)作用下,阻值隨外加磁場變化,導(dǎo)致電橋輸出微伏級的差分電壓值,輸出的電壓經(jīng)過過濾、放大等處理后,再輸送到后端的采集檢測設(shè)備,做進一步分析。
3? 系統(tǒng)性能分析與討論
Darid R.Baselt等1998年研制的GMR生物傳感器,由于信噪比的限制,只能實現(xiàn)在每80 μm×5 μm的區(qū)域上探測到一個磁珠(直徑為2.8 μm);2002年,Schotter等人實現(xiàn)了對低磁珠密度(16 pg/μl)被測樣品的探測;2005年,INESC公司采用U型自旋閥結(jié)構(gòu)制作GMR生物傳感器,其工作頻率從傳統(tǒng)的200 Hz降低到了30 Hz,使得熱噪聲更低(10-17/2V/
);2005年,加利福尼亞大學(xué)物理系D.K.Wood等人研制的亞微型新一代GMR生物傳感器,可實現(xiàn)對小尺寸磁珠(直徑200 nm)的探測,且靈敏度更高(2×10-16emu/
)。雖然磁性生物檢測系統(tǒng)取得一定的成績,但距離實用化仍有很大的距離。
綜合現(xiàn)有技術(shù),提高磁性生物檢測系統(tǒng)的性能,可以在傳感器特性、磁性顆粒的選擇以及外圍電路的設(shè)計等方面進行改進。
3.1傳感器靈敏度
GMR傳感器靈敏度是指其對微弱信號的感應(yīng)能力。由于磁性標(biāo)記體積非常小,所以產(chǎn)生的寄生磁場也非常微弱,因此必須選用靈敏度高的磁性材料制備傳感器。衡量GMR性能的兩個最基本參數(shù)是:
(1)在一定溫度下所能達到的最大GMR值;
(2)獲得最大GMR效應(yīng)所需施加的飽和外磁場強度。
在各種巨磁電阻材料中,多層膜和顆粒膜飽和磁場高達數(shù)特斯拉,其磁場靈敏度低;氧化物陶瓷類材料飽和場極高,難以實現(xiàn)實用化;自旋閥材料飽和磁場較低,僅為幾個或幾十奧斯特,但室溫下GMR不高。因此,尋求GMR值高,飽和磁場低,磁場靈敏度高的合金體系或人工薄膜結(jié)構(gòu)是GMR傳感器生物檢測實用化的難點和重點。
目前,從制作的難易程度、性能的穩(wěn)定性等方面來考慮,傳感器陣列多采用GMR多層膜耦合結(jié)構(gòu)和自旋閥結(jié)構(gòu),隨著研究工作的逐步深入,將來具有更高磁阻率的結(jié)構(gòu),如隧穿磁阻(TMR)、稀土氧化物、微晶或非晶軟磁合金薄膜,以及利用巨磁阻抗效應(yīng)(GMI)的高靈敏傳感器,將在磁性生物陣列檢測中得以應(yīng)用。
3.2磁性微粒的尺寸與磁性含量
在整個系統(tǒng)中,生物特異性反應(yīng)通過磁性微粒的存在與數(shù)量來體現(xiàn)。目前采用的磁性顆粒(如γ-Fe2O3,F(xiàn)e3Ot,NiFe等)可分為微米級和亞微米級兩類,較大的磁性顆粒(約1~3μm)在形狀上比較容易實現(xiàn)統(tǒng)一,雖然磁性物質(zhì)含量較低(約15%),但相對較大的體積,磁性微粒在傳感器表面產(chǎn)生的磁場分量仍然較大,另外,大體積也便于顯微計數(shù)。其缺點是無法高密度地綁定在傳感器表面,因此檢測到的生物分子較少。納米尺度的磁性顆粒具有很高的磁性含量(70%~80%),但是由于制備工藝的限制,同一批次,其大小和形狀都有較大差異,對定量分析非常不利。而且,體積小的納米磁性顆粒容易快速簇集,導(dǎo)致輸出的信號失真。但是,采用敏感度更高的傳感器和更先進的檢測分析系統(tǒng),可以部分滿足小體積磁性顆粒的應(yīng)用要求,2005年,美國斯坦福大學(xué)Guanxiong Li等實驗驗證了當(dāng)自旋閥傳感器陣列尺寸與磁性顆粒尺寸(直徑為16 nm的超順磁Fe3O4顆粒)相近時,傳感器輸出信號與綁定的顆粒數(shù)量呈比較理想的正比關(guān)系,從而體現(xiàn)了采用小體積納米磁性標(biāo)記,自旋閥傳感器陣列在生物檢測中的定量分析能力。
3.3傳感器陣列的物理參數(shù)
GMR傳感器合適的層厚可以保證兩個磁性層反平行耦合,從而保證在沒有外加磁場的情況下,設(shè)備處于高電阻值狀態(tài)。另外,因為GMR傳感器的電阻值主要取決于電子自旋散射,所以其層厚必須比大部分材料中電子的平均自由程(約幾個納米)小,典型的GMR磁性傳感器的層厚大約是2~6 nm。
同時,采用與生物分子尺度相同的傳感器(蛋白質(zhì)、DNA、RNA和病毒等都在1~100 nm的尺度范圍),能夠有效增加檢測的靈敏度。目前,受制于制備的復(fù)雜性,減小傳感器的尺寸仍然十分困難,國內(nèi)研究機構(gòu)應(yīng)用傳統(tǒng)的光學(xué)光刻技術(shù),受光波波長和數(shù)值孔徑等因素的限制,難以制作線寬小于100 nm的圖案。然而更先進的極端遠紫外光刻、電子束直寫、離子投影光刻技術(shù)、X光光刻、電子束投影等技術(shù)雖然能克服上述限制,但系統(tǒng)復(fù)雜,造價十分昂貴。因而,基于傳統(tǒng)光刻技術(shù)上改進的浸沒式光刻系統(tǒng)、微接觸印刷、納米壓印光刻等新的制備技術(shù),將是基材表面批量獲取納米量級GMR傳感器陣列中最具潛力的技術(shù)。
除傳感器本身的物理參數(shù)外,GMR傳感器對磁場的距離也非常敏感,磁性顆粒的寄生磁場隨其與傳感器敏感層的距離呈3階衰減,所以,應(yīng)盡量減小傳感器與磁性標(biāo)記之間的距離,以減少對傳感器靈敏度的過高要求。但是,在實際檢測中,為了防止傳感器表面被生物溶液侵蝕和牢固結(jié)合生物探針,又必須在傳感器表面覆蓋保護層(7 nm PEI/PMMA;1 μm氮化硅)和生物結(jié)合層(金屬材料、玻璃、石英或表面為氧化硅的硅片)。因此,超薄惰性材料和生物結(jié)合材料的發(fā)現(xiàn)與工藝的提高也是提高磁性生物檢測系統(tǒng)性能必不可少的條件。
3.4外加磁場
檢測中需要外加激勵磁場磁化超順磁顆粒,針對不同的磁性傳感器,磁性激勵場可以平行于傳感器表面,也可以垂直于傳感器表面。平行方式相對優(yōu)于垂直方式,當(dāng)傳感器上方不存在磁性微粒時,平行方式不會產(chǎn)生信號輸出,而且激勵場即使有一定的角度偏轉(zhuǎn),也不會導(dǎo)致片上分量的產(chǎn)生。另外,激勵場可以采用直流激勵場或交流激勵場,在交流激勵場作用下,傳感器輸出交流信號,通過鎖相放大技術(shù),可以獲得較高的信噪比,方便信號的提取。但是,相比DC激勵場而言,AC激勵場會導(dǎo)致電磁干擾,需要在后端設(shè)計交流EMI濾波及整流濾波電路,增加了電路復(fù)雜性。另外,外加交流激勵磁場頻率需要均衡考慮,如果過高,系統(tǒng)中的感性阻抗元件(如電磁鐵等)會使電橋輸出的信號大幅減弱;如果激勵磁場頻率太低,又會增加1/f噪聲。對于某些GMR傳感器,還需要外加偏置磁場,用于固定自由層、控制傳感器工作在線性區(qū)間以及防止磁性微粒的初始極化。然而亞微米級的傳感器,由于其自由層已處于單磁疇狀態(tài),可以不施加偏置場,從而提高自由層磁化時的自由度,增加傳感器在易軸的敏感性。
3.5采用信號放大技術(shù)
由于GMR傳感器陣列輸出的信號非常微弱,并且信號中不可避免地存在1/f噪聲和散粒噪聲,為了精確測量掩埋在噪聲中生物信號的幅值及相位,通常用前置低噪聲放大器、帶通濾波器、可控增益放大器、相敏檢測電路、正交移相電路、差分直流放大電路等組成的鎖相放大設(shè)備來抑制差模噪聲和共模噪聲,對傳感器輸出的信號進行預(yù)處理。
4結(jié)語
利用GMR傳感器組成陣列,對磁性標(biāo)記的生物分子的檢測進行研究工作已經(jīng)開展了近十年,這里就檢測方法的基本原理、發(fā)展情況、影響檢測效果的各項因素進行介紹和分析。目前制約GMR傳感器陣列生物檢測性能的關(guān)鍵是制備工藝和材料的問題,在進一步的研究中,需要采用生物分子尺度相同、高靈敏的新型GMR傳感器,研究新的生物機能性保護膜,在避免互擾的基礎(chǔ)上,在芯片上布局更密集、有效生物結(jié)合面更大的陣列,改善傳感器的線性度,保證亞微米級的超順磁顆粒形態(tài)的均一,才能有效促進GMR優(yōu)越感器陣列在生物檢測上的應(yīng)用。
基于GMR傳感器陣列的生物檢測研究
- 傳感器(788346)
相關(guān)推薦
熱點推薦
基于CPLD的壓電生物傳感器檢測電路的設(shè)計
本文介紹了一種基于復(fù)雜可編程邏輯器件(CPLD)的壓電生物傳感器檢測電路.該檢測電路以高性能CPLD(MAX7128)為核心,實現(xiàn)了對壓電生物傳感器10MHz高頻信號的測量與采集,以及所采集的頻率數(shù)據(jù)動態(tài)、實時顯示以及頻率數(shù)據(jù)串行通信等功能.該電路體積小、集成度高,具
2011-01-24 23:11:24
2136
2136
生物傳感器成科技新寵 iphone還可檢測人體毒素?
科技的進步為人體與機器的溝通創(chuàng)造了越來越多的可能性,以生物傳感器為代表的感知傳導(dǎo)技術(shù)已成為科技新寵。近日,伊利諾伊大學(xué)香檳分校研究人員研發(fā)了置身于只能手機,可檢測人體各種毒素的生物傳感器。
2013-08-22 09:49:49
1213
1213生物傳感器的應(yīng)用詳解
生物傳感器是一種對生物物質(zhì)敏感并將其濃度轉(zhuǎn)換為電信號進行檢測的儀器。按照分子識別、轉(zhuǎn)換器件等分類擁有多種類型的生物傳感器,因此生物傳感器也應(yīng)用在醫(yī)學(xué)和非醫(yī)學(xué)領(lǐng)域的眾多方面,本文將詳解生物傳感器的應(yīng)用。
2017-02-07 15:00:15
13166
13166生物傳感器的工作原理是什么
透射式光纖錐形生物傳感器 標(biāo)題拗口?劃重點,看到高靈敏幾個字就行啦,生物傳感器越靈敏測試結(jié)果越準(zhǔn)!什么什么,生物傳感器干啥的?! ? 生物傳感器(biosensor),是一種對生物物質(zhì)敏感并將其濃度轉(zhuǎn)換為電信號進行檢測的儀器。是由固定化的生物敏感
2023-08-07 14:37:48
4157
4157
Allegro 新增GMR傳感器IC
Allegro宣布更新輪速傳感器產(chǎn)品線,能夠滿足從高精度GMR(巨磁阻)到霍爾效應(yīng)傳感器解決方案等所有行業(yè)要求。
2019-07-13 11:25:00
4932
4932GMR巨磁傳感不止有高精度
在磁傳感器的發(fā)展歷程,從霍爾效應(yīng)的磁傳感器,到各向異性磁阻效應(yīng)的AMR磁傳感器,到基于巨磁電阻的GMR磁傳感器,再到基于隧道磁阻的TMR傳感器。在上一期中,單芯片的AMR傳感器呈現(xiàn)出了并不單一的AMR傳感特色,那么基于巨磁電阻的GMR傳感有哪些特點?
2022-02-17 08:00:00
5368
5368GMR生物傳感器的原理及研究現(xiàn)狀
生物傳感器該傳感器應(yīng)用于生物檢測領(lǐng)域,是一種對磁標(biāo)記的生物樣本進行檢測的傳感器,由免疫磁性微球(IMB)、高磁靈敏度的GMR傳感器以及相關(guān)讀出電路三部分構(gòu)成?! ? 免疫磁性微球 1979年,John
2018-11-01 22:23:00
GMR磁場傳感器有什么優(yōu)勢?
GMR磁場傳感器和光電等傳感器相比,具有功耗小、可靠性高、體積小、能工作于惡劣環(huán)境等優(yōu)點。這些都是現(xiàn)有傳統(tǒng)傳感器所不能相比的。另一方面,在制造成本上,GMR磁場傳感器并不高于其它普通傳感器,甚至大大低于某些傳感器。
2019-10-24 09:01:22
檢測凝血的液體體積的傳感器
想請問大家有沒有知道什么微型的傳感器是可以檢測類似液體在一個容器內(nèi)的體積的傳感器? 液體可能會有帶有凝塊的血,并且整個設(shè)備是一個硅膠的半個拳頭大的月經(jīng)杯. 我們想開發(fā)一個檢測生物檢產(chǎn)品??梢宰詣?b class="flag-6" style="color: red">檢測
2020-04-04 09:17:43
生物醫(yī)療行業(yè)MEMS傳感器的應(yīng)用
孕婦到醫(yī)院來。該技術(shù)有利于孕婦隨時檢查胎兒的狀況,保障胎兒和孕婦的健康。生物傳感器對生物物質(zhì)敏感并將其濃度轉(zhuǎn)換為電信號進行檢測,它是由固定化的生物敏感材料做識別元件(包括酶、抗體、抗原、微生物、細胞
2016-12-07 15:46:48
生物傳感器陣列自動檢測儀研制成功
生物傳感器陣列自動檢測儀是一種對結(jié)核桿菌、乙肝病毒等病原體進行臨床檢驗新型臨床檢測設(shè)備,它綜合了生物芯片和生物傳感器的優(yōu)點,將常規(guī)物理檢測指標(biāo)引入到臨床醫(yī)學(xué)分子生物學(xué)診斷領(lǐng)域,根據(jù)生物傳感器芯片表面的頻率變化,實時反映出待測臨床標(biāo)本的靶分子含量。
2019-06-28 06:27:54
生物傳感器的應(yīng)用與展望
最近科學(xué)家們在污染區(qū) 分離出一種能夠發(fā)熒光的細菌,此種細菌含有熒光基因,在污染源的刺激下能夠產(chǎn)生熒光蛋白,從而發(fā)出熒光。可以通過遺傳工程的方法將這種基因?qū)牒线m的細菌內(nèi),制成微生物傳感器,用于環(huán)境監(jiān)測?,F(xiàn)在已經(jīng)將熒光素酶導(dǎo)入大腸桿菌(E.coli)中,用來檢測砷的有毒化合物[8]。
2019-07-10 07:57:33
生物傳感器系統(tǒng)的性能標(biāo)準(zhǔn)是什么
生物傳感器系統(tǒng)的性能標(biāo)準(zhǔn)是什么生物傳感器的電氣特性測量工具和技術(shù)介紹
2021-04-30 06:34:20
兩公司合作開發(fā)納米管生物傳感器
的生物傳感器?! ≡擁椖恐荚陂_發(fā)使用半導(dǎo)體芯片,開發(fā)面向醫(yī)療保健應(yīng)用的納米生物傳感器產(chǎn)品。這些應(yīng)用通常被稱為片上實驗室(lab-on-chip)應(yīng)用。 “我們很高興Funai技術(shù)研究所認(rèn)識到我們酶涂層
2018-11-19 15:20:44
什么是不同類型的生物識別傳感器?
據(jù)(不同的公共和私有數(shù)據(jù)集)、人工智能、機器學(xué)習(xí)、物聯(lián)網(wǎng)和計算機人機界面相結(jié)合,可以有許多應(yīng)用。生物特征識別的第一步是收集生物特征數(shù)據(jù)。為此,有不同類型的生物識別傳感器。這些傳感器通常被設(shè)計為邊緣設(shè)備,更
2022-03-25 10:44:05
仿生傳感器有什么特點?
仿生傳感器,是一種采用新的檢測原理的新型傳感器,它采用固定化的細胞、酶或者其他生物活性物質(zhì)與換能器相配合組成傳感器。這種傳感器是近年來生物醫(yī)學(xué)和電子學(xué)、工程學(xué)相互滲透而發(fā)展起來的一種新型的信息技術(shù)。這種傳感器的特點是性能好、壽命長。在仿生傳感器中,比較常用的是生體模擬的傳感器。
2019-08-19 08:27:24
關(guān)于CAPSENSE?接近按鈕傳感器陣列的設(shè)計問題求解
我正在設(shè)計一個接近按鈕傳感器陣列。我知道環(huán)路傳感器通??赡苁墙咏?b class="flag-6" style="color: red">檢測的更好選擇,但對于我的應(yīng)用,我希望使用按鈕型傳感器進行接近檢測。
到目前為止,我已經(jīng):
創(chuàng)建了一個由9 個傳感器組成的陣列
2025-07-30 07:04:37
關(guān)于人體紅外陣列傳感器的使用
以前在智能家居行業(yè)打滾,現(xiàn)在到了新公司,接手的一個案子是要檢測靜態(tài)人體的,不能再用以前那種焦電式人體紅外傳感器,松下出了一款GridEye的陣列傳感器,有沒有使用過,可以分享一下,這里有一些原廠給出的資料,免費開源給大家
2017-03-23 17:14:56
基于GMR傳感器陣列的生物檢測研究
不會逐漸消退,也不需要昂貴的光學(xué)掃描設(shè)備以及專業(yè)的操作人員。因此,無論是傳感器本身的性能,還是磁性標(biāo)記的特點,都決定了GMR傳感器陣列在生物檢測領(lǐng)域的研究具有較高的應(yīng)用價值和實踐意義?! ?巨磁阻陣列傳感器
2018-11-14 16:42:52
基于生物傳感器的醫(yī)療領(lǐng)域應(yīng)用
作者:劉向陽(廣西桂林市76041研究所桂林 541001)一、生物傳感器應(yīng)用前景廣闊 生物傳感器是一個非常活躍的研究和工程技術(shù)領(lǐng)域,它與生物信息學(xué)、生物芯片、生物控制論、仿生學(xué)、生物計算機等學(xué)科
2019-07-16 07:43:53
基于MSP430 MCU采用 GMR 傳感器的水表參考設(shè)計包含BOM,PCB文件和光繪文件
上的集成擴展掃描接口 (ESI) 來實現(xiàn)超低功耗(相對于采用外部電路的相同檢測方法)。在水表設(shè)計中,耦合到巨磁阻 (GMR) 旋轉(zhuǎn)檢測傳感器的 ESI 會在微控制器的其余部分處于低功耗模式的同時,持續(xù)
2018-08-06 08:42:37
基于硅納米線的生物氣味傳感器是什么?
基于硅納米線的生物氣味傳感器是什么?硅納米線表面連接修飾OBP蛋白分子的方法有哪些?基于硅納米線的氣味識別生物傳感器的結(jié)構(gòu)是如何構(gòu)成的?
2021-07-11 07:43:02
如何利用基于GMR的角度傳感器設(shè)計用于汽車應(yīng)用角度位置感測?
如何利用基于GMR的角度傳感器設(shè)計用于汽車應(yīng)用角度位置感測?
2021-09-24 07:55:52
巨磁電阻傳感器在磁場線性測量領(lǐng)域中的應(yīng)用
摘要:對巨磁電阻傳感器進行了研究,介紹了巨磁電阻傳感器的結(jié)構(gòu)和屏蔽作用,選取電流檢測作為巨磁電阻傳感器在線性磁場測量的代表,通過對巨磁電阻傳感器測試和電流檢測的測試,分析了巨磁電阻傳感器在磁場
2018-11-13 16:06:37
微生物BOD傳感器
氧化分解,使之無機化或氣體化時所消耗水中溶解氧的總數(shù)量?! ∫话銇碚f微生物BOD傳感器具有較強的使用壽命,但其保養(yǎng)也是十分的重要。正常情況下,微生物傳感器應(yīng)貯存于無營養(yǎng)物、40攝氏度的磷酸緩沖液中,以
2014-11-19 09:14:10
微陣列加速度傳感器是什么?
大量程的能測量105 g微加速度計具有非常重要的應(yīng)用價值。目前微陣列式加速度計發(fā)展非常迅速,它對提高武器作戰(zhàn)水平,改進武器性能起著十分重要作用。另外汽車上的安全氣囊,在微機器人中,執(zhí)行器動作的運動速度、加速度和力的大小的檢測都需要微陣列式加速度傳感器。因此微陣列式加速度傳感器的應(yīng)用范圍廣,前景十分看好。
2020-03-05 07:50:38
淺析化學(xué)傳感器和納米傳感器
光化學(xué)傳感器是近年發(fā)展起來的一種新型微量和痕量分析技術(shù),它是把特定的化學(xué)物質(zhì)的種類和濃度變成電信號來表示的功能元件。主要是利用光敏感材料與被測物質(zhì)中的分子、離子或生物物質(zhì)相互接觸時直接或間接地引起電
2019-07-02 07:43:53
電子感覺傳感器技術(shù)發(fā)展動態(tài)
英國以其雄厚的人才資源和研究基礎(chǔ)處于世界領(lǐng)先地位,英國的蘇格蘭高地科學(xué)研究集團的高級研究員喬治?多德被公認(rèn)為電子嗅覺系統(tǒng)的先驅(qū),他于1980年在沃威克大學(xué)首先研制出這種系統(tǒng)。 電子鼻是由傳感器陣列
2009-07-19 08:55:36
納米技術(shù)和生物傳感器的未來發(fā)展趨勢如何
隨著納米技術(shù)和生物傳感器交叉融合的發(fā)展,越來越多的新型納米生物傳感器涌現(xiàn)出來,如量子點、DNA、寡核苷配體等納米生物傳感器。
2020-04-21 06:27:50
請問怎樣去設(shè)計壓電生物傳感器檢測電路?
壓電生物傳感器原理是什么?為什么要設(shè)計壓電生物傳感器檢測電路?微型壓電傳感器檢測電路硬件是如何設(shè)計的?怎樣去設(shè)計壓電生物傳感器檢測電路?
2021-04-14 06:21:15
這些新型傳感器你聽過嗎?
藍綠藻的光傳感器蛋白質(zhì)實施改造,成功開發(fā)出了以紅色光誘導(dǎo)基因表達的“人工光傳感器”?! 〈舜?b class="flag-6" style="color: red">研究成果以利用DNA重組技術(shù)設(shè)計、創(chuàng)造具有全新功能的生物這一“合成生物學(xué)”理念為基礎(chǔ)。通過將此次獲得成功的、使
2016-12-19 15:47:22
防水晶體管在生物傳感器中的應(yīng)用是什么?
可折疊的防水晶體管是由哪些部分組成的?什么是生物傳感器(biosensor)?生物傳感器具有哪些功能?防水晶體管在生物傳感器中的應(yīng)用是什么?
2021-06-17 07:44:18
高效快速準(zhǔn)確生物傳感器技術(shù)成功分離赤芍抗內(nèi)毒素成分
近日,重慶第三軍醫(yī)大學(xué)西南醫(yī)院中心實驗室的科研人員,采用生物傳感器技術(shù),成功地從赤芍中分離出抗內(nèi)毒素成分。研究人員認(rèn)為這種方法具有高效、快速、準(zhǔn)確等優(yōu)點,適合于大規(guī)模地從中草藥中分離抗內(nèi)毒素
2018-11-20 15:47:23
生物傳感器研究及應(yīng)用
簡述了生物傳感器尤其是微生物傳感器近年來在發(fā)酵工業(yè)及環(huán)境監(jiān)測領(lǐng)域中的研究與應(yīng)用,對其發(fā)展前景及市場化作了預(yù)測及展望。生物電極是以固定化生物體組成作為分子識別
2008-12-02 07:59:22
8
8高檢測靈敏度的DNA 生物傳感器介紹
基于磁珠帶標(biāo)記DNA 電化學(xué)傳感器、磁珠標(biāo)記的GMR ( TMR) DNA 生物傳感器和納米線場效應(yīng)DNA 生物傳感器都具有高檢測靈敏度的特點, 是極具發(fā)展前途的研究方向。主要介紹了以上三種
2009-04-07 09:46:52
25
25生物傳感器的概述和研究進展
生物傳感器具有選擇性高、分析速度快、操作簡易等特點, 利用它可以進行在線甚至活體分析。目前生物傳感器的發(fā)展迅速, 研究日新月異, 實用價值也越來越大。關(guān)鍵詞: 生物
2009-06-18 15:02:23
37
37光纖納米生物傳感器的現(xiàn)狀及發(fā)展
介紹了當(dāng)前用于單細胞研究的光纖納米生物傳感器的現(xiàn)狀及發(fā)展,包括光纖納米生物傳感器的制作、構(gòu)造和在生物研究領(lǐng)域中的應(yīng)用。關(guān)鍵詞: 光纖納米生物傳感器; 單細胞測量; 納
2009-06-22 14:11:20
28
28新型生物傳感器在生物醫(yī)學(xué)工程中的應(yīng)用
簡要介紹了生物傳感器的結(jié)構(gòu)、特點,并對兩類新型生物傳感器———壓電生物傳感器和光生物傳感器的結(jié)構(gòu)、原理及其在生物醫(yī)學(xué)工程中的應(yīng)用作了扼要分析,探討了生物傳感器的研
2009-06-27 08:39:51
36
36光纖DNA生物傳感器的研究動向
DNA 生物傳感器是分子生物學(xué)與微電子學(xué)、電化學(xué)、光學(xué)等相結(jié)合的產(chǎn)物,光纖DNA 生物傳感器是近年DNA 生物傳感器中發(fā)展最快的一類。介紹了光纖DNA 生物傳感器的結(jié)構(gòu)原理及研究動向
2009-07-02 09:26:14
14
14BOD微生物傳感器和BOD智能生物檢測儀的研究
報道了一種具有廣泛底物的高效菌種制成的BOD 微生物傳感器及智能型快速BOD 測定儀。采用該儀器, 可快速測定水中的BOD, 測定周期僅為30 分鐘。關(guān) 鍵 詞: 微生物傳感器; 檢測儀
2009-07-02 09:43:40
10
10生物傳感器的研究現(xiàn)狀及應(yīng)用
簡述了生物傳感器尤其是微生物傳感器近年來在發(fā)酵工業(yè)及環(huán)境監(jiān)測領(lǐng)域中的研究與應(yīng)用,對其發(fā)展前景及市場化作了預(yù)測及展望。生物電極是以固定化生物體組成作為分子識別元
2009-07-02 09:46:25
17
17生物醫(yī)學(xué)石英晶體傳感器的研究動向
生物醫(yī)學(xué)石英晶體傳感器是分子生物學(xué)與微電子學(xué)、電化學(xué)等相結(jié)合的產(chǎn)物,本文介紹了生物醫(yī)學(xué)石英晶體傳感器的結(jié)構(gòu)原理及研究動向。關(guān)鍵詞:石英晶體,生物醫(yī)學(xué),免疫
2009-07-03 10:44:35
18
18電流型生物傳感器的研究進展
以葡萄糖生物傳感器的發(fā)展為線索,簡要介紹了生物傳感器的原理和發(fā)展概況,介紹了電流型生物傳感器中的電子傳遞系統(tǒng),對酶電極中的電子傳遞介體進行了詳細的論述,電子傳遞介
2009-07-08 14:20:09
20
20壓電生物傳感器及其研究進展
生物傳感器的研究是近年來生物化學(xué),分子生物、傳感器技術(shù)等領(lǐng)域的研究熱點。本文簡單介紹了壓電生物傳感器(PEBS)的基本原理、組成和分類,重點對近年來國外PEBS方面的研究
2009-07-14 09:04:21
17
17BOD微生物傳感器檢測方法的研究
采用固定化微生物分?jǐn)?shù)懸浮的方法,進行了BOD微生物傳感器及其檢測方法的研究,該傳感器響應(yīng)大,測量范圍廣、穩(wěn)定性好,測定BOD時,線性響應(yīng)范圍為0~500mg/L。
2009-07-17 10:53:36
15
15光學(xué)DNA生物傳感器
概述了當(dāng)前DNA生物傳感器的研究特點以及發(fā)展現(xiàn)狀中存在的問題,通過對光學(xué)DNA生物傳感器的基本原理和種類詳細介紹,結(jié)合多學(xué)科交叉的特點,對DNA生物傳感器的發(fā)展前景進行
2009-07-18 09:02:12
21
21微陣列光尋址生化傳感器系統(tǒng)設(shè)計研究
微陣列光尋址生化傳感器系統(tǒng)設(shè)計研究
該文介紹一種基于電解質(zhì)溶液一絕緣層一半導(dǎo)體(EIS)結(jié)構(gòu)的光、機,電一體化的微陣列光尋址電位傳感器系統(tǒng)(LAPS).文中
2010-02-26 17:01:50
17
17生物傳感器原理(biosensor)
生物傳感器(biosensor)
生物傳感器是對生物物質(zhì)敏感并將其濃度轉(zhuǎn)換為電信號進行檢測的儀器。生物傳感器具有接受器與轉(zhuǎn)換器的功能。由于酶膜、線粒體
2008-01-07 13:16:01
2716
2716生物傳感器
生物傳感器
生物傳感器是對生物物質(zhì)敏感并將其濃度轉(zhuǎn)換為電信號進行檢測的儀器。生物傳感器具有接受器與轉(zhuǎn)換器的功能。由于酶膜、線粒體電子傳遞系統(tǒng)粒子膜、微生
2008-01-09 12:55:58
1451
1451微陣列加速度傳感器的版圖設(shè)計
微陣列加速度傳感器的版圖設(shè)計微陣列加速度傳感器版圖設(shè)計是依賴于傳感陣列布陣的研究。根據(jù)上述的回歸分析方法確定因子空間中傳感器有效的布陣,從而可
2009-02-28 11:22:17
893
893
聲發(fā)射傳感器布置陣列
聲發(fā)射傳感器布置陣列
??? 由于目前多通道聲發(fā)射儀所采用的計算機和軟件功能都比較強,因此在實際進行聲發(fā)射檢測
2009-11-15 12:41:25
3359
3359
UPT生物傳感器
概述 UPT生物傳感器用于檢測以紅外上轉(zhuǎn)換磷光顆粒(Up-Converting Phosphor,UCP)為標(biāo)記物的免疫層析試紙條上檢測帶與控制帶上的磷光信號,是一種基于上轉(zhuǎn)換磷光技術(shù)(Up-Converting Phosphor Technology, UPT)的光學(xué)生物傳感器。依據(jù)配備的不同種類 UPT免
2011-01-28 02:57:07
36
36納米生物分析新方法與生物傳感研究
圍繞生物小分子高靈敏、高選擇性的快速檢測,近兩年我們結(jié)合多種納米技術(shù),利用制備和獲得的先進納米材料,研制了一系列電化學(xué)生物傳感器,包括安培傳感器、電容傳感器和電致化學(xué)發(fā)光傳感器,用于過氧化氫、溶解氧、NADH、脫氫酶底物(乙醇)、氧化酶底物(葡萄
2011-02-01 12:11:01
27
27利用MSP430掃描接口使用GMR傳感器
該應(yīng)用報告描述了旋轉(zhuǎn)檢測器的實現(xiàn),該旋轉(zhuǎn)檢測器使用一對可檢測磁場的巨磁阻GMR(Giant Magneto-Resistive,)傳感器。傳感器的分布使它們不使用正交信號序列,這提供了討論非正交情況
2012-02-02 14:48:51
34
34陣列式振動傳感器環(huán)境干擾消除方法研究
為了克服復(fù)雜環(huán)境下單振動傳感器誤報率高的問題,采用了傳感器陣列的定位(定區(qū)域)技術(shù)消除環(huán)境干擾的方法。首先首次提出了傳感器陣列的最佳分布模型和傳感器陣列消除環(huán)境干
2012-10-15 12:17:39
20
20電化學(xué)生物傳感器前景
,隨著生物科學(xué)、信息科學(xué)和材料科學(xué)發(fā)展成果的推動,電化學(xué)生物傳感器技術(shù)飛速發(fā)展。今后一段時間里,電化學(xué)生物傳感器的研究工作將主要圍繞選擇活性強、選擇性高的電化學(xué)生物傳感元件;提高信號檢測器的使用壽命
2018-12-17 15:41:01
13149
13149生物傳感器的分類
生物傳感器按照其感受器中所采用的生命物質(zhì)分類, 可分為:微生物傳感器、免疫傳感器、組織傳感器、細胞傳感器、酶傳感器、DNA傳感器等等。
2018-12-17 15:59:40
11763
11763生物傳感器的工作原理
生物傳感器是根據(jù)傳感器信號轉(zhuǎn)換器,將生物傳感器、半導(dǎo)體電極的生物傳感器、光學(xué)傳感器、溫度傳感器、壓電傳感器傳感器;其次是電化學(xué)電極、半導(dǎo)體、光電轉(zhuǎn)換器、熱敏電阻、壓電水晶等。
2018-12-17 16:02:07
24492
24492生物傳感器的特點
生物傳感器是對生物物質(zhì)敏感并將其濃度轉(zhuǎn)換為電信號進行檢測的儀器。生物傳感器的特點一般有以下幾個。采用固定化生物活性物質(zhì)作催化劑,價值昂貴的試劑可以重復(fù)多次使用,克服了過去酶法分析試劑費用高和化學(xué)分析繁瑣復(fù)雜的缺點。
2018-12-17 16:07:51
9564
9564生物傳感器是什么
生物傳感器是一種對生物物質(zhì)敏感并將其濃度轉(zhuǎn)換為電信號進行檢測的儀器。是由固定化的生物敏感材料作識別元件(包括酶、抗體、抗原、微生物、細胞、組織、核酸等生物活性物質(zhì))、適當(dāng)?shù)睦砘瘬Q能器(如氧電極、光敏管、場效應(yīng)管、壓電晶體等等)及信號放大裝置構(gòu)成的分析工具或系統(tǒng)。生物傳感器具有接受器與轉(zhuǎn)換器的功能。
2018-12-17 16:12:13
20985
20985用于實時檢測病原菌的新型生物傳感器
據(jù)麥姆斯咨詢報道,加拿大研究人員利用芯片實驗室微流控技術(shù)開發(fā)出一款全新的生物傳感器,用于實時檢測病原菌。
2018-12-24 10:41:45
4213
4213用生物傳感裝置檢測巴氏滅菌指標(biāo)
據(jù)麥姆斯咨詢報道,研究人員開發(fā)了一款用于在小型環(huán)境中進行裸眼ALP檢測的免疫生物傳感器。本項研究中的ALP被認(rèn)作牛奶質(zhì)量的生物標(biāo)志物,因為其變性點接近于牛奶中存在的大多數(shù)病原性微生物菌叢的破壞點。
2019-01-09 15:02:59
3135
3135磁傳感器技術(shù)取得了顯著進展,GMR傳感器管理電池
過去幾十年來,磁傳感器技術(shù)取得了顯著進展。早期和當(dāng)前的傳感器利用霍爾效應(yīng);最近的設(shè)備使用稱為巨磁阻(GMR)的效應(yīng)。 GMR傳感器使用諸如銦 - 銻之類的材料的半導(dǎo)體處理。 圖1 中的GMR傳感器
2019-08-12 14:37:41
2804
2804
生物傳感器的分類有哪些
生物傳感器主要有下面三種分類命名方式。根據(jù)生物傳感器中分子識別元件即敏感元件可分為五類:酶傳感器(enzymesensor)、微生物傳感器( microbialsensor)、細胞傳器
2020-03-15 16:54:00
23459
23459針對石墨烯生物傳感器在病原體檢測方面的研究進展
隨著納米科學(xué)和納米技術(shù)的快速發(fā)展,利用納米材料輔助生物傳感器以提升檢測性能備受關(guān)注。納米石墨烯具有優(yōu)良的光、電理化特性,在過去的十多年中,基于石墨烯的光學(xué)、電化學(xué)生物傳感器得到了大力發(fā)展。
2020-08-31 15:12:05
3496
3496DNA生物傳感器芯片實時檢測單核苷酸多態(tài)性
由加州大學(xué)圣地亞哥分校研究團隊領(lǐng)導(dǎo)所創(chuàng)建的新型DNA生物傳感器是一款比指甲蓋還小的無線芯片,能夠檢測到溶液中極微量濃度的SNP。
2020-12-26 00:47:01
1128
1128AMR、GMR和TMRc傳感各自有什么特色
電子發(fā)燒友網(wǎng)報道(文/李寧遠)縱觀磁傳感器的發(fā)展歷程,可以分為以下幾個階段,先是基于霍爾效應(yīng)的磁傳感器,到基于各向異性磁阻效應(yīng)的磁傳感器,也就是AMR傳感,再到基于巨磁阻的GMR傳感,最后是基于隧道
2022-02-15 17:25:22
10998
10998中國農(nóng)大:在生物傳感器方面研究取得新進展,具有現(xiàn)場檢測食源性致病菌的潛力
傳感新品 【中國農(nóng)大:在生物傳感器方面研究取得新進展】 近日,中國農(nóng)大信息與電氣工程學(xué)院林建涵教授團隊在傳感器領(lǐng)域著名期刊《生物傳感器與生物電子學(xué)》(Biosensors
2023-01-09 12:52:27
1488
1488中國科學(xué)院天津工業(yè)生物技術(shù)研究所:在基于轉(zhuǎn)錄調(diào)控因子的生物傳感器研究方面取得進展
傳感新品 【中國科學(xué)院天津工業(yè)生物技術(shù)研究所:在基于轉(zhuǎn)錄調(diào)控因子的生物傳感器研究方面取得進展】 天津工生所在基于轉(zhuǎn)錄調(diào)控因子的生物傳感器研究方面取得進展。微生物育種技術(shù)正朝著自動化、標(biāo)準(zhǔn)化和系統(tǒng)化
2023-01-14 01:18:27
1627
1627湖南大學(xué):自供電生物傳感器超靈敏檢測雙重生物標(biāo)志物
傳感新品 【湖南大學(xué):自供電生物傳感器超靈敏檢測雙重生物標(biāo)志物!】 湖南大學(xué)蔡仁教授基于酶生物燃料細胞(EBFC)、催化發(fā)夾組裝(CHA)和DNA雜交鏈?zhǔn)椒磻?yīng)(HCR)以及電容器和數(shù)字萬用表(DMM
2023-04-18 10:01:55
2017
2017生物傳感器在醫(yī)學(xué)領(lǐng)域中的應(yīng)用
生物傳感器是一個非常活躍的研究和工程技術(shù)領(lǐng)域,它與生物信息學(xué)、生物芯片、生物控制論、仿生學(xué)、生物計算機等學(xué)科一起,處在生命科學(xué)和信息科學(xué)的交叉區(qū)域。生物傳感器是發(fā)展生物技術(shù)必不可少的一種先進的檢測
2023-06-16 17:39:18
4324
4324通過石墨烯生物傳感器同時檢測蛋白質(zhì)和RNA生物信號
Cardea Bio),通過在單個基于石墨烯的生物傳感器上同時檢測蛋白質(zhì)和RNA生物信號,展示了新的多組學(xué)(Multiomics)方法。
2023-06-18 09:20:36
2274
2274應(yīng)用指南 | FET 生物傳感器的直流I-V 特性研究(附直播回顧)
點擊上方 “泰克科技” 關(guān)注我們! 由于半導(dǎo)體生物傳感器的低成本、迅速反應(yīng)、檢測準(zhǔn)確等優(yōu)點,對于此類傳感器的研究和開發(fā)進行了大量投入。特別是基于場效應(yīng)晶體管 (FET) 的生物傳感器或生物場效應(yīng)管
2023-11-14 18:05:02
2369
2369
生物傳感器研究的光譜技術(shù)
? 背景 Denis Boudreau 博士在魁北克拉瓦爾大學(xué)的研究重點是發(fā)光和等離子體納米材料合成、分子電子/振動光譜以及生物、環(huán)境和工業(yè)傳感應(yīng)用的光學(xué)傳感器設(shè)計之間的界面。 他的研究小組在研究
2023-11-15 06:34:59
922
922
?科普|生物傳感器
或者物理換能器轉(zhuǎn)化為聲、光、電等信號,儀器將信號輸出,我們就能夠得到待測物質(zhì)的濃度。 02分類 1. 按照其傳感器中所采用的生命物質(zhì)分類,可分為:微生物傳感器、、組織傳感器、酶傳感器、DNA傳感器等。 2. 按照傳感器器件檢測的原
2024-03-21 17:17:37
1768
1768安泰ATA-2161高壓放大器在生物傳感器研究中的應(yīng)用
生物傳感器(biosensor),是一種對生物物質(zhì)敏感并將其濃度轉(zhuǎn)換為電信號進行檢測的儀器,它利用固定化生物成分或生物體作為敏感元件。生物傳感器并不專指用于生物技術(shù)領(lǐng)域的傳感器,它的應(yīng)用領(lǐng)域還包括
2024-03-27 11:18:56
968
968
便攜快速檢測的電化學(xué)生物傳感器:顛覆性變革生物檢測方式
的需求。因此,開發(fā)一種便攜、快速、準(zhǔn)確的生物檢測方法成為當(dāng)前研究的熱點。近年來,電化學(xué)生物傳感器以其獨特的優(yōu)勢在生物檢測領(lǐng)域嶄露頭角,有望顛覆傳統(tǒng)的生物檢測方式。 一、電化學(xué)生物傳感器的原理 電化學(xué)生物傳感器
2024-04-26 17:14:12
3103
3103電化學(xué)生物傳感器在生物檢測領(lǐng)域的顯著優(yōu)勢
電化學(xué)生物傳感器在生物檢測領(lǐng)域具有顯著的優(yōu)勢,這些優(yōu)勢不僅體現(xiàn)在其高靈敏度、快速響應(yīng)等方面,更在于其在醫(yī)學(xué)診斷、環(huán)境監(jiān)測、食品安全等多個領(lǐng)域中的廣泛應(yīng)用。下面將詳細闡述電化學(xué)生物傳感器在生物檢測領(lǐng)域
2024-04-29 10:00:08
2112
2112
生物傳感器:科技前沿的生物監(jiān)測利器
和品質(zhì)。生物學(xué)研究:生物傳感器可用于細胞信號傳導(dǎo)、蛋白質(zhì)相互作用等生物過程的研究,為生物學(xué)家提供有力的研究工具??偨Y(jié)生物傳感器作為一種先進的檢測與監(jiān)控技術(shù),正以其獨特的優(yōu)勢和廣泛的應(yīng)用前景,成為現(xiàn)代科技
2024-11-20 15:12:52
5260
5260生物傳感器的主要組成包括_生物傳感器的分類
這是生物傳感器的核心部分,由固定化的生物敏感材料構(gòu)成,用于識別被測目標(biāo)。這些生物敏感材料包括酶、抗體、抗原、微生物、細胞、組織、核酸等生物活性物質(zhì)。它們通過表面共價結(jié)合、物理吸附或包埋等方式固定
2025-01-27 14:01:00
1909
1909研究用于獨立檢測壓力和溫度的3D主動矩陣多模態(tài)傳感器陣列
和壓力刺激之間的干擾。 創(chuàng)新點 浦項科技大學(xué)Sungjune Jung,Sanghoon Baek和蔚山科學(xué)技術(shù)研究所Hyunhyub Ko開發(fā)了基于有源矩陣的三維集成的多模態(tài)傳感器陣列,以獨立檢測溫度和壓力。我們的方法包括校準(zhǔn)補償,以解耦溫度和壓力信號。單個像素
2025-01-23 18:02:26
1453
1453
浮思特 | 晶圓級石墨烯場效應(yīng)晶體管生物傳感器陣列的集成與應(yīng)用研究
近年來,生物傳感器的發(fā)展已成為一個重要的研究重點,具有改革醫(yī)療和診斷的潛力。簡單來說,生物傳感器是通過生成與反應(yīng)中分析物濃度成正比的信號來測量生物反應(yīng)的設(shè)備。隨著對高精度設(shè)備需求的增加,生物傳感器在
2025-04-14 11:33:00
903
903
電子發(fā)燒友App



評論