增材制造介紹
增材制造俗稱3D打印,是融合了計算機輔助設(shè)計、材料加工與成形技術(shù)、以數(shù)字模型文件為基礎(chǔ),通過軟件與數(shù)控系統(tǒng)將專用的金屬材料、非金屬材料以及醫(yī)用生物材料,按照擠壓、燒結(jié)、熔融、光固化、噴射等方式逐層堆積,制造出實體物品的制造技術(shù)。相對于傳統(tǒng)的、對原材料去除-切削、組裝的加工模式不同,是一種“自下而上”通過材料累加的制造方法,從無到有。這使得過去受到傳統(tǒng)制造方式的約束,而無法實現(xiàn)的復(fù)雜結(jié)構(gòu)件制造變?yōu)榭赡堋?/p>
增材制造技術(shù)使用能源有激光、電子束、紫外光等,采用的材料有樹脂、塑料、金屬、陶瓷、蠟等,因其采用的成型方法和使用的成型材料以及依靠的凝結(jié)熱源不同,現(xiàn)在主要分為四類:分層實體制造(LOM)工藝技術(shù);立體光刻(SLA)工藝技術(shù);選擇性激光燒結(jié)(SLS)工藝技術(shù);熔融沉積成型(FDM)工藝技術(shù)。
增材制造技術(shù)的分類及特點
?。?)無模具快速自由成型,制造周期短,小批量零件生產(chǎn)成本低。增材制造技術(shù)因為只需要有加工原料和加工設(shè)備就能夠進行產(chǎn)品加工,不需要機械加工和工裝模具,可以實現(xiàn)一次成型,節(jié)約了零件的不同工序加工和組裝消耗的時間,進行單件小批量的生產(chǎn)時,增材制造的成本低。傳統(tǒng)加工制造需要原料采購、準備,并且加工過程中還需要不同工序的輪換加工,加工完后還需要進行零件的組裝等等,而這無形之間延長了產(chǎn)品的生產(chǎn)周期,同時也不經(jīng)濟。
?。?)零件近凈成型,機加余量小,材料利用率高。增材制造技術(shù)因為是一次成型,“自下而上”的“分層制造、逐層疊加”而成型的,材料的損耗大部分是用于對模型成型的支撐上,而絕大部分材料是應(yīng)用于模型的成型上。因此,增材制造相比傳統(tǒng)減材制造更加的節(jié)省原料,也更加的節(jié)約能源,因此更經(jīng)濟些,材料利用率也更高些。
?。?)激光束能量密度高,可實現(xiàn)傳統(tǒng)難加工材料。激光具有的相干性好、單色性好、方向性好和亮度高的特點,尤其是其高能量束能夠在很短的時間將溫度升高到數(shù)千度,在此溫度下絕大部分的金屬都能夠被融化加工成型。因此,傳統(tǒng)的難加工材料如38CrMnSiA、TC4等,都可被加工制造出來。
?。?)加工的零件結(jié)構(gòu)性強度更高、加工應(yīng)力集中更小。增材制造技術(shù)采用的是一體化制造成型技術(shù),相比由零件間組裝成的整體部件具有更強的剛度和穩(wěn)定性。另外,增材制造采用的分層制造、逐層疊加的成型技術(shù),在每一片層凝結(jié)成型時,已經(jīng)將成型應(yīng)力釋放,因此制造的零件沒有應(yīng)力集中或者應(yīng)力集中現(xiàn)象很少。當然,增材制造技術(shù)還有很多其他方面的優(yōu)勢,比如可實現(xiàn)多種材料任意復(fù)合制造、加工效率高、不受零件復(fù)雜外形限制等。
增材制造技術(shù)優(yōu)勢
1、設(shè)計上的自由度——在機加工、鑄造或模塑生產(chǎn)當中,復(fù)雜設(shè)計的代價高昂,其每項細節(jié)都必須通過使用額外的刀具或其它步驟進行制造。相比而言,在增材制造當中,部件的復(fù)雜度極少需要或根本無需額外考慮。增材制造可以構(gòu)建出其它制造工藝所不能實現(xiàn)或無法想像的形狀,可以從純粹考慮功能性的方面來設(shè)計部件,而無需考慮與制造相關(guān)的限制。
2、小批量生產(chǎn)的經(jīng)濟性——增材制造過程無需生產(chǎn)或裝配硬模具,且裝夾過程用時較短,因此它不存在那些需要通過大批量生產(chǎn)才能抵消的典型的生產(chǎn)成本。增材工藝允許采用非常低的生產(chǎn)批量,包括單件生產(chǎn),就能達到經(jīng)濟合理的打印生產(chǎn)目的。
3、高材料效率——增材制造部件,特別是金屬部件,仍然需要進行機加工。增材制造工序經(jīng)常不能達到關(guān)鍵性部件所要求的最終細節(jié)、尺寸和表面光潔度的要求。但是所有近凈成形工藝當中,增材制造是凈成形水平最高的工藝,其后續(xù)機加工所必須切削掉的材料數(shù)量是很微量的。
4、生產(chǎn)可預(yù)測性好——增材制造的構(gòu)建時間經(jīng)??梢愿鶕?jù)部件設(shè)計方案直接預(yù)測出來,這意味著生產(chǎn)用時可以預(yù)測得很精確。隨著增材制造業(yè)的拓展,制造商對于自己的制造時間表編制將擁有嚴密得多的控制力。
5、減少裝配——對于許多技術(shù)成熟的產(chǎn)品來說,這是一項由增材生產(chǎn)工藝所引進的根本性變革的要素。通過增材制造所構(gòu)建的復(fù)雜形狀可以一體成形,取代那些目前還需采用眾多部件裝配而成的產(chǎn)品。這意味著增材工藝所帶來的節(jié)省效果包括了省去了之前需投入到裝配工序的工作量、需涉及的堅固件、釬焊或焊接工序,還有單純?yōu)榱搜b配操作而添加的多余表面形狀和材料。
關(guān)鍵技術(shù)
增材制造有廣闊的發(fā)展前景,但也存在巨大的挑戰(zhàn)。目前最大的難題是材料的物理與化學(xué)性能制約了其實現(xiàn)技術(shù)。如:在成形材料上,目前主要是有機高分子材料和金屬材料。金屬材料直接成形是近十多年的研究熱點,正逐漸向工業(yè)應(yīng)用,難點在于如何提高精度。新的研究方向是用增材制造技術(shù)直接把軟組織材料(生物基質(zhì)材料和細胞)堆積起來,形成類生命體,經(jīng)過體外培養(yǎng)和體內(nèi)培養(yǎng)去制造復(fù)雜組織器官。關(guān)鍵技術(shù)的研發(fā)將有力地推動增材技術(shù)的發(fā)展。
1、精度控制技術(shù)
增材制造的精度取決于材料增加的層厚和增材單元的尺寸和精度控制。增材制造與切削制造的最大不同是材料需要一個逐層累加的系統(tǒng),因此再涂層(recoating)是材料累加的必要工序,再涂層的厚度直接決定了零件在累加方向的精度和表面粗糙度,增材單元的控制直接決定了制件的最小特征制造能力和制件精度?,F(xiàn)有的增材制造方法中,多采用激光束或電子束在材料上逐點形成增材單元進行材料累加制造,如:金屬直接成形中,激光熔化的微小熔池的尺寸和外界氣氛控制,直接影響制造精度和制件性能。激光光斑在0.1~0.2mm,激光作用于金屬粉末,金屬粉末熔化形成的熔池對成形精度有著重要影響。通過激光或電子束光斑直徑、成形工藝(掃描速度、能量密度)、材料性能的協(xié)調(diào),有效控制增材單元尺寸是提高制件精度的關(guān)鍵技術(shù)。
隨著激光、電子束及光投影技術(shù)的發(fā)展,未來將發(fā)展兩個關(guān)鍵技術(shù):一是金屬直接制造中控制激光光斑更細小,逐點掃描方式使增材單元能達到微納米級,提高制件精度;另一個方向是光固化成形技術(shù)的平面投影技術(shù),投影控制單元隨著液晶技術(shù)的發(fā)展,分辨率逐步提高,增材單元更小,可實現(xiàn)高精度和高效率制造。發(fā)展目標是實現(xiàn)增材層厚和增材單元尺寸減小10~100倍,從現(xiàn)有的0.1mm級向0.01~0.001mm發(fā)展,制造精度達到微納米級。
2、 高效制造技術(shù) 增材制造在向大尺寸構(gòu)件制造方向發(fā)展,如金屬激光直接制造飛機上的鈦合金框粱結(jié)構(gòu)件,框粱結(jié)構(gòu)件長度可達6m,目前制作時間過長,如何實現(xiàn)多激光束同步制造、提高制造效率、保證同步增材組織之間的一致性和制造結(jié)合區(qū)域質(zhì)量是發(fā)展的關(guān)鍵技術(shù)。此外,為提高效率,增材制造與傳統(tǒng)切削制造結(jié)合,發(fā)展增材制造與材料去除制造的復(fù)合制造技術(shù)是提高制造效率的關(guān)鍵技術(shù)。 為實現(xiàn)大尺寸零件的高效制造,發(fā)展增材制造多加工單元的集成技術(shù)。如:對于大尺寸金屬零件,采用多激光束(4~6個激光源)同步加工,提高制造效率,成形效率提高10倍。對于大尺寸零件,研究增材制造與切削制造結(jié)合的復(fù)合關(guān)鍵技術(shù),發(fā)揮各工藝方法的其優(yōu)勢,提高制造效率。發(fā)展目標是:增材制造零件尺寸達到20m,制件效率提高10倍。形成增材制造與傳統(tǒng)切削加工結(jié)合,使復(fù)雜金屬零件的高效高精度制造技術(shù)在工業(yè)生產(chǎn)上得到廣泛應(yīng)用。
3、 復(fù)合材料零件增材制造技術(shù)
現(xiàn)階段增材制造主要是制造單一材料的零件,如單一高分子材料和單一金屬材料,目前正在向單一陶瓷材料發(fā)展。隨著零件性能要求的提高,復(fù)合材料或梯度材料零件成為迫切需要發(fā)展的產(chǎn)品。如:人工關(guān)節(jié)未來需要Ti合金和CoCrMo合金的復(fù)合,既要保證人工關(guān)節(jié)具有良好的耐磨界面(CoCrMo合金保證),又要與骨組織有良好的生物相容界面(Ti合金),這就需要制造的人工關(guān)節(jié)具有復(fù)合材料結(jié)構(gòu)。由于增材制造具有微量單元的堆積過程,每個堆積單元可通過不斷變化材料實現(xiàn)一個零件中不同材料的復(fù)合,實現(xiàn)控形和控性的制造。
未來將發(fā)展多材料的增材制造,多材料組織之間在成形過程中的同步性是關(guān)鍵技術(shù)。如:不同材料如何控制相近的溫度范圍進行物理或化學(xué)轉(zhuǎn)變,如何控制增材單元的尺寸和增材層的厚度。這種材料的復(fù)合,包括金屬與陶瓷的復(fù)合、多種金屬的復(fù)合、細胞與生物材料的復(fù)合,為實現(xiàn)宏觀結(jié)構(gòu)與微觀組織一體化制造提供新的技術(shù)。發(fā)展目標是:實現(xiàn)不同材料在微小制造單元的復(fù)合,達到陶瓷與金屬成份的主動控制,實現(xiàn)生命體單元的受控成形與微結(jié)構(gòu)制造,從結(jié)構(gòu)自由成形向結(jié)構(gòu)與性能可控成形方向發(fā)展。
電子發(fā)燒友App








評論