chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度神經(jīng)網(wǎng)絡不同超參數(shù)調整規(guī)則總結

汽車玩家 ? 來源:工程師曾玲 ? 2019-08-29 15:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在深度神經(jīng)網(wǎng)絡中,超參數(shù)的調整是一項必備技能,通過觀察在訓練過程中的監(jiān)測指標如損失loss和準確率來判斷當前模型處于什么樣的訓練狀態(tài),及時調整超參數(shù)以更科學地訓練模型能夠提高資源利用率。下面將分別介紹并總結不同超參數(shù)的調整規(guī)則。

(1)學習率

學習率(learning rate或作lr)是指在優(yōu)化算法中更新網(wǎng)絡權重的幅度大小。學習率可以是恒定的、逐漸降低的,基于動量的或者是自適應的。不同的優(yōu)化算法決定不同的學習率。當學習率過大則可能導致模型不收斂,損失loss不斷上下震蕩;學習率過小則導致模型收斂速度偏慢,需要更長的時間訓練。通常lr取值為[0.01,0.001,0.0001]

(2)批次大小batch_size

批次大小是每一次訓練神經(jīng)網(wǎng)絡送入模型的樣本數(shù),在卷積神經(jīng)網(wǎng)絡中,大批次通??墒咕W(wǎng)絡更快收斂,但由于內存資源的限制,批次過大可能會導致內存不夠用或程序內核崩潰。bath_size通常取值為[16,32,64,128]

(3)優(yōu)化器optimizer

目前Adam是快速收斂且常被使用的優(yōu)化器。隨機梯度下降(SGD)雖然收斂偏慢,但是加入動量Momentum可加快收斂,同時帶動量的隨機梯度下降算法有更好的最優(yōu)解,即模型收斂后會有更高的準確性。通常若追求速度則用Adam更多。

(4)迭代次數(shù)

迭代次數(shù)是指整個訓練集輸入到神經(jīng)網(wǎng)絡進行訓練的次數(shù),當測試錯誤率和訓練錯誤率相差較小時,可認為當前迭代次數(shù)合適;當測試錯誤率先變小后變大時則說明迭代次數(shù)過大了,需要減小迭代次數(shù),否則容易出現(xiàn)過擬合。

(5)激活函數(shù)

在神經(jīng)網(wǎng)絡中,激活函數(shù)不是真的去激活什么,而是用激活函數(shù)給神經(jīng)網(wǎng)絡加入一些非線性因素,使得網(wǎng)絡可以更好地解決較為復雜的問題。比如有些問題是線性可分的,而現(xiàn)實場景中更多問題不是線性可分的,若不使用激活函數(shù)則難以擬合非線性問題,測試時會有低準確率。所以激活函數(shù)主要是非線性的,如sigmoid、tanh、relu。sigmoid函數(shù)通常用于二分類,但要防止梯度消失,故適合淺層神經(jīng)網(wǎng)絡且需要配備較小的初始化權重,tanh函數(shù)具有中心對稱性,適合于有對稱性的二分類。在深度學習中,relu是使用最多的激活函數(shù),簡單又避免了梯度消失。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    在Ubuntu20.04系統(tǒng)中訓練神經(jīng)網(wǎng)絡模型的一些經(jīng)驗

    , batch_size=512, epochs=20)總結 這個核心算法中的卷積神經(jīng)網(wǎng)絡結構和訓練過程,是用來對MNIST手寫數(shù)字圖像進行分類的。模型將圖像作為輸入,通過卷積和池化層提取圖像的特征,然后通過全連接層進行分類預測。訓練過程中,模型通過最小化損失函數(shù)來優(yōu)化
    發(fā)表于 10-22 07:03

    BP神經(jīng)網(wǎng)絡的調參技巧與建議

    BP神經(jīng)網(wǎng)絡的調參是一個復雜且關鍵的過程,涉及多個參數(shù)的優(yōu)化和調整。以下是一些主要的調參技巧與建議: 一、學習率(Learning Rate) 重要性 :學習率是BP
    的頭像 發(fā)表于 02-12 16:38 ?1205次閱讀

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?1075次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡的學習率

    優(yōu)化BP神經(jīng)網(wǎng)絡的學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡學習率的方法: 一、理解學習率的重要性 學習率決定了模型參數(shù)在每次迭代時更新的幅度。過大的學習率可能導致模型在
    的頭像 發(fā)表于 02-12 15:51 ?1317次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    自學習能力 : BP神經(jīng)網(wǎng)絡能夠通過訓練數(shù)據(jù)自動調整網(wǎng)絡參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務,無需人工進行復雜的特征工程。 泛化能力強 : BP
    的頭像 發(fā)表于 02-12 15:36 ?1315次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    神經(jīng)網(wǎng)絡(即反向傳播神經(jīng)網(wǎng)絡)的核心,它建立在梯度下降法的基礎上,是一種適合于多層神經(jīng)元網(wǎng)絡的學習算法。該算法通過計算每層網(wǎng)絡的誤差,并將這些誤差反向傳播到前一層,從而
    的頭像 發(fā)表于 02-12 15:18 ?1101次閱讀

    BP神經(jīng)網(wǎng)絡深度學習的關系

    ),是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網(wǎng)絡權重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?1211次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡的構建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經(jīng)網(wǎng)絡。 神經(jīng)網(wǎng)絡由多個神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?721次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工神經(jīng)網(wǎng)絡模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1843次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    卷積神經(jīng)網(wǎng)絡參數(shù)調整方法

    卷積神經(jīng)網(wǎng)絡因其在處理具有空間層次結構的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設置。參數(shù)調整是一個復雜的過程,涉及到多個
    的頭像 發(fā)表于 11-15 15:10 ?1665次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結構差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?2283次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:52 ?1101次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡的區(qū)別

    神經(jīng)網(wǎng)絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發(fā)展,神經(jīng)網(wǎng)絡的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1818次閱讀

    LSTM神經(jīng)網(wǎng)絡與傳統(tǒng)RNN的區(qū)別

    深度學習領域,循環(huán)神經(jīng)網(wǎng)絡(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡應運而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1563次閱讀

    Moku人工神經(jīng)網(wǎng)絡101

    不熟悉神經(jīng)網(wǎng)絡的基礎知識,或者想了解神經(jīng)網(wǎng)絡如何優(yōu)化加速實驗研究,請繼續(xù)閱讀,探索基于深度學習的現(xiàn)代智能化實驗的廣闊應用前景。什么是神經(jīng)網(wǎng)絡?“人工
    的頭像 發(fā)表于 11-01 08:06 ?863次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>101