chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)的特征預(yù)處理問題討論

汽車玩家 ? 來源:今日頭條 ? 作者:不一樣的程序猿 ? 2020-03-15 17:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文我們來討論特征預(yù)處理的相關(guān)問題。主要包括特征的歸一化和標(biāo)準(zhǔn)化,異常特征樣本清洗與樣本數(shù)據(jù)不平衡問題的處理。

1. 特征的標(biāo)準(zhǔn)化和歸一化

由于標(biāo)準(zhǔn)化和歸一化這兩個(gè)詞經(jīng)?;煊?,所以本文不再區(qū)別標(biāo)準(zhǔn)化和歸一化,而通過具體的標(biāo)準(zhǔn)化和歸一化方法來區(qū)別具體的預(yù)處理操作。

z-score標(biāo)準(zhǔn)化:這是最常見的特征預(yù)處理方式,基本所有的線性模型在擬合的時(shí)候都會(huì)做 z-score標(biāo)準(zhǔn)化。具體的方法是求出樣本特征x的均值mean和標(biāo)準(zhǔn)差std,然后用(x-mean)/std來代替原特征。這樣特征就變成了均值為0,方差為1了。在sklearn中,我們可以用StandardScaler來做z-score標(biāo)準(zhǔn)化。當(dāng)然,如果我們是用pandas做數(shù)據(jù)預(yù)處理,可以自己在數(shù)據(jù)框里面減去均值,再除以方差,自己做z-score標(biāo)準(zhǔn)化。

max-min標(biāo)準(zhǔn)化:也稱為離差標(biāo)準(zhǔn)化,預(yù)處理后使特征值映射到[0,1]之間。具體的方法是求出樣本特征x的最大值max和最小值min,然后用(x-min)/(max-min)來代替原特征。如果我們希望將數(shù)據(jù)映射到任意一個(gè)區(qū)間[a,b],而不是[0,1],那么也很簡單。用(x-min)(b-a)/(max-min)+a來代替原特征即可。在sklearn中,我們可以用MinMaxScaler來做max-min標(biāo)準(zhǔn)化。這種方法的問題就是如果測試集或者預(yù)測數(shù)據(jù)里的特征有小于min,或者大于max的數(shù)據(jù),會(huì)導(dǎo)致max和min發(fā)生變化,需要重新計(jì)算。所以實(shí)際算法中, 除非你對(duì)特征的取值區(qū)間有需求,否則max-min標(biāo)準(zhǔn)化沒有 z-score標(biāo)準(zhǔn)化好用。

L1/L2范數(shù)標(biāo)準(zhǔn)化:如果我們只是為了統(tǒng)一量綱,那么通過L2范數(shù)整體標(biāo)準(zhǔn)化也是可以的,具體方法是求出每個(gè)樣本特征向量

x→的L2范數(shù)||x→||2,然后用x→/||x→||2代替原樣本特征即可。當(dāng)然L1范數(shù)標(biāo)準(zhǔn)化也是可以的,即用x/||x||1

代替原樣本特征。通常情況下,范數(shù)標(biāo)準(zhǔn)化首選L2范數(shù)標(biāo)準(zhǔn)化。在sklearn中,我們可以用Normalizer來做L1/L2范數(shù)標(biāo)準(zhǔn)化。

此外,經(jīng)常我們還會(huì)用到中心化,主要是在PCA降維的時(shí)候,此時(shí)我們求出特征x的平均值mean后,用x-mean代替原特征,也就是特征的均值變成了0, 但是方差并不改變。這個(gè)很好理解,因?yàn)镻CA就是依賴方差來降維的。

雖然大部分機(jī)器學(xué)習(xí)模型都需要做標(biāo)準(zhǔn)化和歸一化,也有不少模型可以不做做標(biāo)準(zhǔn)化和歸一化,主要是基于概率分布的模型,比如決策樹大家族的CART,隨機(jī)森林等。當(dāng)然此時(shí)使用標(biāo)準(zhǔn)化也是可以的,大多數(shù)情況下對(duì)模型的泛化能力也有改進(jìn)。

2. 異常特征樣本清洗

我們在實(shí)際項(xiàng)目中拿到的數(shù)據(jù)往往有不少異常數(shù)據(jù),有時(shí)候不篩選出這些異常數(shù)據(jù)很可能讓我們后面的數(shù)據(jù)分析模型有很大的偏差。那么如果我們沒有專業(yè)知識(shí),如何篩選出這些異常特征樣本呢?常用的方法有兩種。

第一種是聚類,比如我們可以用KMeans聚類將訓(xùn)練樣本分成若干個(gè)簇,如果某一個(gè)簇里的樣本數(shù)很少,而且簇質(zhì)心和其他所有的簇都很遠(yuǎn),那么這個(gè)簇里面的樣本極有可能是異常特征樣本了。我們可以將其從訓(xùn)練集過濾掉。

第二種是異常點(diǎn)檢測方法,主要是使用iForest或者one class SVM,使用異常點(diǎn)檢測的機(jī)器學(xué)習(xí)算法來過濾所有的異常點(diǎn)。

當(dāng)然,某些篩選出來的異常樣本是否真的是不需要的異常特征樣本,最好找懂業(yè)務(wù)的再確認(rèn)一下,防止我們將正常的樣本過濾掉了。

3. 處理不平衡數(shù)據(jù)

這個(gè)問題其實(shí)不算特征預(yù)處理的部分,不過其實(shí)它的實(shí)質(zhì)還是訓(xùn)練集中各個(gè)類別的樣本的特征分布不一致的問題,所以這里我們一起講。

我們做分類算法訓(xùn)練時(shí),如果訓(xùn)練集里的各個(gè)類別的樣本數(shù)量不是大約相同的比例,就需要處理樣本不平衡問題。也許你會(huì)說,不處理會(huì)怎么樣呢?如果不處理,那么擬合出來的模型對(duì)于訓(xùn)練集中少樣本的類別泛化能力會(huì)很差。舉個(gè)例子,我們是一個(gè)二分類問題,如果訓(xùn)練集里A類別樣本占90%,B類別樣本占10%。 而測試集里A類別樣本占50%, B類別樣本占50%, 如果不考慮類別不平衡問題,訓(xùn)練出來的模型對(duì)于類別B的預(yù)測準(zhǔn)確率會(huì)很低,甚至低于50%。

如何解決這個(gè)問題呢?一般是兩種方法:權(quán)重法或者采樣法。

權(quán)重法是比較簡單的方法,我們可以對(duì)訓(xùn)練集里的每個(gè)類別加一個(gè)權(quán)重class weight。如果該類別的樣本數(shù)多,那么它的權(quán)重就低,反之則權(quán)重就高。如果更細(xì)致點(diǎn),我們還可以對(duì)每個(gè)樣本加權(quán)重sample weight,思路和類別權(quán)重也是一樣,即樣本數(shù)多的類別樣本權(quán)重低,反之樣本權(quán)重高。sklearn中,絕大多數(shù)分類算法都有class weight和 sample weight可以使用。

如果權(quán)重法做了以后發(fā)現(xiàn)預(yù)測效果還不好,可以考慮采樣法。

采樣法常用的也有兩種思路,一種是對(duì)類別樣本數(shù)多的樣本做子采樣, 比如訓(xùn)練集里A類別樣本占90%,B類別樣本占10%。那么我們可以對(duì)A類的樣本子采樣,直到子采樣得到的A類樣本數(shù)和B類別現(xiàn)有樣本一致為止,這樣我們就只用子采樣得到的A類樣本數(shù)和B類現(xiàn)有樣本一起做訓(xùn)練集擬合模型。第二種思路是對(duì)類別樣本數(shù)少的樣本做過采樣, 還是上面的例子,我們對(duì)B類別的樣本做過采樣,直到過采樣得到的B類別樣本數(shù)加上B類別原來樣本一起和A類樣本數(shù)一致,最后再去擬合模型。

上述兩種常用的采樣法很簡單,但是都有個(gè)問題,就是采樣后改變了訓(xùn)練集的分布,可能導(dǎo)致泛化能力差。所以有的算法就通過其他方法來避免這個(gè)問題,比如SMOTE算法通過人工合成的方法來生成少類別的樣本。方法也很簡單,對(duì)于某一個(gè)缺少樣本的類別,它會(huì)隨機(jī)找出幾個(gè)該類別的樣本,再找出最靠近這些樣本的若干個(gè)該類別樣本,組成一個(gè)候選合成集合,然后在這個(gè)集合中不停的選擇距離較近的兩個(gè)樣本(x1,y),(x2,y),在這兩個(gè)樣本之間,比如中點(diǎn),構(gòu)造一個(gè)新的該類別樣本。舉個(gè)例子,比如該類別的候選合成集合有兩個(gè)樣本(x1,y),(x2,y),那么SMOTE采樣后,可以得到一個(gè)新的訓(xùn)練樣本((x1+x2)/2,y),(x1+x22,y),通過這種方法,我們可以得到不改變訓(xùn)練集分布的新樣本,讓訓(xùn)練集中各個(gè)類別的樣本數(shù)趨于平衡。我們可以用imbalance-learn這個(gè)Python庫中的SMOTEENN類來做SMOTE采樣。

4. 結(jié)語

特征工程系列終于寫完了,這個(gè)系列的知識(shí)比較零散,更偏向工程方法,所以不像算法那么緊湊,寫的也不是很好,希望大家批評(píng)指正。如果有其他好的特征工程方法需要補(bǔ)充的,歡迎留言評(píng)論。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    數(shù)據(jù)預(yù)處理軟核加速模塊設(shè)計(jì)

    數(shù)據(jù)拼接操作,其預(yù)處理模塊結(jié)構(gòu)框圖如下圖 模塊最后得到的信號(hào)為ddr_q、ddr_clk和ddr_wrreq。ddr_q是并行128bits圖像數(shù)據(jù),ddr_clk是RAM的出口時(shí)鐘,同時(shí)引出作為下一模塊的數(shù)據(jù)時(shí)鐘,ddr_wrreq置高時(shí)代表有效數(shù)據(jù)。
    發(fā)表于 10-29 08:09

    機(jī)器視覺檢測PIN針

    : 結(jié)合形態(tài)學(xué)處理、特征提?。ㄈ玳L寬比、面積)及深度學(xué)習(xí)(針對(duì)復(fù)雜缺陷),自動(dòng)檢出彎曲、斷裂、變形、污染等。輸出與控制:實(shí)時(shí)顯示檢測結(jié)果(OK/NG)及具體參數(shù)數(shù)值。生成檢測報(bào)告,支持?jǐn)?shù)據(jù)追溯。NG品自動(dòng)剔除信號(hào)輸出,無縫對(duì)接產(chǎn)
    發(fā)表于 09-26 15:09

    FPGA 加持,友思特圖像采集卡高速預(yù)處理助力視覺系統(tǒng)運(yùn)行提速增效

    圖像預(yù)處理是圖像處理關(guān)鍵環(huán)節(jié),可優(yōu)化數(shù)據(jù)傳輸、減輕主機(jī)負(fù)擔(dān),其算法可在FPGA等硬件上執(zhí)行。友思特FPGA圖像采集卡憑借FPGA特性,能縮短處理時(shí)間、降低延遲,適用于高速接口及實(shí)時(shí)、大數(shù)據(jù)量場景,可完成多種
    的頭像 發(fā)表于 08-13 17:41 ?762次閱讀
    FPGA 加持,友思特圖像采集卡高速<b class='flag-5'>預(yù)處理</b>助力視覺系統(tǒng)運(yùn)行提速增效

    鋰電池制造 | 電芯預(yù)處理工藝的步驟詳解

    電芯預(yù)處理是鋰電池包制造的首要工序,無論是新能源汽車的續(xù)航穩(wěn)定性,還是儲(chǔ)能系統(tǒng)的循環(huán)壽命,其根基都可追溯至預(yù)處理工序?qū)﹄娦疽恢滦缘陌芽?,其核心在于通過系統(tǒng)檢測與篩選消除量產(chǎn)電芯的性能差異,為后續(xù)組裝
    的頭像 發(fā)表于 08-11 14:53 ?849次閱讀
    鋰電池制造 | 電芯<b class='flag-5'>預(yù)處理</b>工藝的步驟詳解

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    隨著機(jī)器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。F
    的頭像 發(fā)表于 07-16 15:34 ?2608次閱讀

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對(duì)深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對(duì)輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)據(jù)中所要表示的規(guī)律。從原理上看,使用深度學(xué)習(xí)
    的頭像 發(fā)表于 04-02 18:21 ?1264次閱讀

    FPGA Verilog HDL語法之編譯預(yù)處理

    Verilog HDL語言和C語言一樣也提供了編譯預(yù)處理的功能。“編譯預(yù)處理”是Verilog HDL編譯系統(tǒng)的一個(gè)組成部分。Verilog HDL語言允許在程序中使用幾種特殊的命令(它們不是一般
    的頭像 發(fā)表于 03-27 13:30 ?1071次閱讀
    FPGA Verilog HDL語法之編譯<b class='flag-5'>預(yù)處理</b>

    如何確定在OpenVINO? Toolkit中預(yù)處理支持的輸入顏色格式?

    無法確定在 OpenVINO? Toolkit 中預(yù)處理支持的輸入顏色格式。
    發(fā)表于 03-06 07:28

    常見xgboost錯(cuò)誤及解決方案

    的XGBoost錯(cuò)誤及其解決方案: 1. 數(shù)據(jù)預(yù)處理錯(cuò)誤 錯(cuò)誤 :未對(duì)數(shù)據(jù)進(jìn)行適當(dāng)?shù)?b class='flag-5'>預(yù)處理,如缺失值處理特征編碼、特征縮放等。 解決方案
    的頭像 發(fā)表于 01-19 11:22 ?4610次閱讀

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+兩本互為支持的書

    》一書則是介紹視覺處理的執(zhí)行體,該執(zhí)行體力圖以更人性化的方式來執(zhí)行和處理問題,即以具身的形式,而非傳統(tǒng)的機(jī)械式的生硬形式來充當(dāng)執(zhí)行體。 也就是說是以人體特征機(jī)器人的形式來感知周圍環(huán)境
    發(fā)表于 01-01 15:50

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?1956次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    cmp在機(jī)器學(xué)習(xí)中的作用 如何使用cmp進(jìn)行數(shù)據(jù)對(duì)比

    機(jī)器學(xué)習(xí)領(lǐng)域,"cmp"這個(gè)術(shù)語可能并不是一個(gè)常見的術(shù)語,它可能是指"比較"(comparison)的縮寫。 比較在機(jī)器學(xué)習(xí)中的作用 模型評(píng)估 :比較不同模型的性能是
    的頭像 發(fā)表于 12-17 09:35 ?1308次閱讀

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺(tái)流程

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺(tái)是一個(gè)復(fù)雜而系統(tǒng)的過程,涉及數(shù)據(jù)收集、處理、特征提取、模型訓(xùn)練、評(píng)估、部署和監(jiān)控等多個(gè)環(huán)節(jié)。
    的頭像 發(fā)表于 12-14 10:34 ?668次閱讀

    自然語言處理機(jī)器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    自然語言處理(Natural Language Processing,簡稱NLP)是人工智能和語言學(xué)領(lǐng)域的一個(gè)分支,它致力于研究如何讓計(jì)算機(jī)能夠理解、解釋和生成人類語言。機(jī)器學(xué)習(xí)(Machine
    的頭像 發(fā)表于 12-05 15:21 ?2521次閱讀

    Minitab 數(shù)據(jù)清理與預(yù)處理技巧

    Minitab是一款功能強(qiáng)大的統(tǒng)計(jì)分析和質(zhì)量管理軟件,在數(shù)據(jù)分析過程中,數(shù)據(jù)清理與預(yù)處理是至關(guān)重要的環(huán)節(jié)。以下是一些在Minitab中進(jìn)行數(shù)據(jù)清理與預(yù)處理的技巧: 一、數(shù)據(jù)導(dǎo)入與格式調(diào)整 導(dǎo)入數(shù)據(jù)
    的頭像 發(fā)表于 12-02 16:06 ?2466次閱讀