chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)的Softmax定義和優(yōu)點(diǎn)

汽車(chē)玩家 ? 來(lái)源:今日頭條 ? 作者:不一樣的程序猿 ? 2020-03-15 17:18 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Softmax在機(jī)器學(xué)習(xí)中有非常廣泛的應(yīng)用,但是剛剛接觸機(jī)器學(xué)習(xí)的人可能對(duì)Softmax的特點(diǎn)以及好處并不理解,其實(shí)你了解了以后就會(huì)發(fā)現(xiàn),Softmax計(jì)算簡(jiǎn)單,效果顯著,非常好用。

我們先來(lái)直觀看一下,Softmax究竟是什么意思

我們知道m(xù)ax,假如說(shuō)我有兩個(gè)數(shù),a和b,并且a>b,如果取max,那么就直接取a,沒(méi)有第二種可能

但有的時(shí)候我不想這樣,因?yàn)檫@樣會(huì)造成分值小的那個(gè)饑餓。所以我希望分值大的那一項(xiàng)經(jīng)常取到,分值小的那一項(xiàng)也偶爾可以取到,那么我用softmax就可以了

現(xiàn)在還是a和b,a>b,如果我們?nèi)“凑誷oftmax來(lái)計(jì)算取a和b的概率,那a的softmax值大于b的,所以a會(huì)經(jīng)常取到,而b也會(huì)偶爾取到,概率跟它們本來(lái)的大小有關(guān)。所以說(shuō)不是max,而是 Soft max

那各自的概率究竟是多少呢,我們下面就來(lái)具體看一下

定義

假設(shè)我們有一個(gè)數(shù)組V,Vi表示V中的第i個(gè)元素,那么Vi元素的Softmax值就是

機(jī)器學(xué)習(xí)的Softmax定義和優(yōu)點(diǎn)

Vi元素的Softmax值

也就是說(shuō),是該元素的指數(shù)值,與所有元素指數(shù)值和的比值

這個(gè)定義可以說(shuō)非常的直觀,當(dāng)然除了直觀樸素好理解以外,它還有更多的優(yōu)點(diǎn)

1.計(jì)算與標(biāo)注樣本的差距

神經(jīng)網(wǎng)絡(luò)的計(jì)算當(dāng)中,我們經(jīng)常需要計(jì)算按照神經(jīng)網(wǎng)絡(luò)的正向傳播計(jì)算的分?jǐn)?shù)S1,按照正確標(biāo)注計(jì)算的分?jǐn)?shù)S2,之間的差距,計(jì)算Loss,才能應(yīng)用反向傳播。Loss定義為交叉熵

機(jī)器學(xué)習(xí)的Softmax定義和優(yōu)點(diǎn)

交叉熵

取log里面的值就是這組數(shù)據(jù)正確分類(lèi)的Softmax值,它占的比重越大,這個(gè)樣本的Loss也就越小,這種定義符合我們的要求

2.計(jì)算上非常非常的方便

當(dāng)我們對(duì)分類(lèi)的Loss進(jìn)行改進(jìn)的時(shí)候,我們要通過(guò)梯度下降,每次優(yōu)化一個(gè)step大小的梯度

我們定義選到y(tǒng)i的概率是

機(jī)器學(xué)習(xí)的Softmax定義和優(yōu)點(diǎn)

yi的概率

然后我們求Loss對(duì)每個(gè)權(quán)重矩陣的偏導(dǎo),應(yīng)用到了鏈?zhǔn)椒▌t

機(jī)器學(xué)習(xí)的Softmax定義和優(yōu)點(diǎn)

求導(dǎo)結(jié)果

詳細(xì)過(guò)程

機(jī)器學(xué)習(xí)的Softmax定義和優(yōu)點(diǎn)

求導(dǎo)過(guò)程

最后結(jié)果的形式非常的簡(jiǎn)單,只要將算出來(lái)的概率的向量對(duì)應(yīng)的真正結(jié)果的那一維減1,就可以了

舉個(gè)例子,通過(guò)若干層的計(jì)算,最后得到的某個(gè)訓(xùn)練樣本的向量的分?jǐn)?shù)是[ 1, 5, 3 ],

那么概率分別就是

機(jī)器學(xué)習(xí)的Softmax定義和優(yōu)點(diǎn)

訓(xùn)練樣本的概率

如果這個(gè)樣本正確的分類(lèi)是第二個(gè)的話(huà),那么計(jì)算出來(lái)的偏導(dǎo)就是

[0.015,0.866?1,0.117]=[0.015,?0.134,0.117]

是不是很簡(jiǎn)單!!然后再根據(jù)這個(gè)進(jìn)行back propagation就可以了

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    機(jī)器學(xué)習(xí)和深度學(xué)習(xí)中需避免的 7 個(gè)常見(jiàn)錯(cuò)誤與局限性

    無(wú)論你是剛?cè)腴T(mén)還是已經(jīng)從事人工智能模型相關(guān)工作一段時(shí)間,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)中都存在一些我們需要時(shí)刻關(guān)注并銘記的常見(jiàn)錯(cuò)誤。如果對(duì)這些錯(cuò)誤置之不理,日后可能會(huì)引發(fā)諸多麻煩!只要我們密切關(guān)注數(shù)據(jù)、模型架構(gòu)
    的頭像 發(fā)表于 01-07 15:37 ?108次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>中需避免的 7 個(gè)常見(jiàn)錯(cuò)誤與局限性

    Leadway電機(jī)方案的優(yōu)點(diǎn)

    Leadway電機(jī)方案是深圳市立維創(chuàng)展科技有限公司推出的一套以“全國(guó)產(chǎn)器件+高功率密度電源模塊”為核心的電機(jī)驅(qū)動(dòng)與控制系統(tǒng)解決方案,具有高穩(wěn)定性、高性?xún)r(jià)比、小型化等特點(diǎn),適用于工業(yè)自動(dòng)化、機(jī)器
    發(fā)表于 09-26 09:07

    量子機(jī)器學(xué)習(xí)入門(mén):三種數(shù)據(jù)編碼方法對(duì)比與應(yīng)用

    在傳統(tǒng)機(jī)器學(xué)習(xí)中數(shù)據(jù)編碼確實(shí)相對(duì)直觀:獨(dú)熱編碼處理類(lèi)別變量,標(biāo)準(zhǔn)化調(diào)整數(shù)值范圍,然后直接輸入模型訓(xùn)練。整個(gè)過(guò)程更像是數(shù)據(jù)清洗,而非核心算法組件。量子機(jī)器學(xué)習(xí)的編碼完全是另一回事。傳統(tǒng)算
    的頭像 發(fā)表于 09-15 10:27 ?644次閱讀
    量子<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>入門(mén):三種數(shù)據(jù)編碼方法對(duì)比與應(yīng)用

    如何在機(jī)器視覺(jué)中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    人士而言往往難以理解,人們也常常誤以為需要扎實(shí)的編程技能才能真正掌握并合理使用這項(xiàng)技術(shù)。事實(shí)上,這種印象忽視了該技術(shù)為機(jī)器視覺(jué)(乃至生產(chǎn)自動(dòng)化)帶來(lái)的潛力,因?yàn)樯疃?b class='flag-5'>學(xué)習(xí)并非只屬于計(jì)算機(jī)科學(xué)家或程序員。 從頭開(kāi)始:什么
    的頭像 發(fā)表于 09-10 17:38 ?803次閱讀
    如何在<b class='flag-5'>機(jī)器</b>視覺(jué)中部署深度<b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    如何解決開(kāi)發(fā)機(jī)器學(xué)習(xí)程序時(shí)Keil項(xiàng)目只能在調(diào)試模式下運(yùn)行,但無(wú)法正常執(zhí)行的問(wèn)題?

    如何解決開(kāi)發(fā)機(jī)器學(xué)習(xí)程序時(shí)Keil項(xiàng)目只能在調(diào)試模式下運(yùn)行,但無(wú)法正常執(zhí)行的問(wèn)題
    發(fā)表于 08-28 07:28

    超小型Neuton機(jī)器學(xué)習(xí)模型, 在任何系統(tǒng)級(jí)芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機(jī)器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競(jìng)爭(zhēng)對(duì)手的框架小10 倍,速度也快10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文中,我們將介紹
    發(fā)表于 07-31 11:38

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    隨著機(jī)器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無(wú)法滿(mǎn)足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)作為一種靈活且高效的硬件加速平臺(tái)
    的頭像 發(fā)表于 07-16 15:34 ?2767次閱讀

    【嘉楠堪智K230開(kāi)發(fā)板試用體驗(yàn)】K230機(jī)器視覺(jué)相關(guān)功能體驗(yàn)

    K230開(kāi)發(fā)板攝像頭及AI功能測(cè)評(píng) 攝像頭作為機(jī)器視覺(jué)應(yīng)用的基礎(chǔ),能夠給機(jī)器學(xué)習(xí)模型提供輸入,提供輸入的質(zhì)量直接影響機(jī)器學(xué)習(xí)模型的效果。 K
    發(fā)表于 07-08 17:25

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合**

    【技術(shù)干貨】nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合 近期收到不少伙伴咨詢(xún)nRF54系列芯片的應(yīng)用與技術(shù)細(xì)節(jié),今天我們整理幾個(gè)核心問(wèn)題與解答,帶你快速掌握如何在nRF54上部署AI
    發(fā)表于 04-01 00:00

    請(qǐng)問(wèn)STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?
    發(fā)表于 03-13 07:34

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機(jī)器人日常

    在人工智能和機(jī)器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機(jī)器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡(jiǎn)直殺瘋了!靠著逆天的深度學(xué)習(xí)
    的頭像 發(fā)表于 02-19 15:49 ?816次閱讀

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)模型市場(chǎng)的未來(lái)發(fā)展。
    的頭像 發(fā)表于 02-13 09:39 ?689次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過(guò)逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)定義與發(fā)展 深度學(xué)習(xí)
    的頭像 發(fā)表于 02-12 15:15 ?1605次閱讀

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    與人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能和機(jī)器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù) 人工智能(AI)和機(jī)器學(xué)習(xí)(ML)是現(xiàn)代科技的
    的頭像 發(fā)表于 01-25 17:37 ?1789次閱讀
    人工智能和<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的概念與應(yīng)用

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機(jī)器學(xué)習(xí)模型部署在資源受限的設(shè)備(如微
    的頭像 發(fā)表于 01-25 17:05 ?1400次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開(kāi)發(fā)環(huán)境