chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一個(gè)全新的深度學(xué)習(xí)框架——計(jì)圖

倩倩 ? 來源:電子技術(shù)應(yīng)用ChinaAET ? 2020-03-26 15:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學(xué)習(xí)技術(shù)正廣泛應(yīng)用于人工智能的各個(gè)領(lǐng)域,如計(jì)算機(jī)視覺、機(jī)器翻譯、自然語言處理、智能機(jī)器人等,取得了前所未有的突破。當(dāng)前,一方面,隨著深度學(xué)習(xí)新技術(shù)的出現(xiàn)、任務(wù)復(fù)雜度的提高,易于擴(kuò)展同時(shí)保持高效的架構(gòu)成為發(fā)展趨勢(shì);另一方面,我國人工智能產(chǎn)業(yè)發(fā)展迅速,急需構(gòu)建自己的開源深度學(xué)習(xí)生態(tài)。

清華大學(xué)計(jì)算機(jī)系胡事民教授研究團(tuán)隊(duì)提出了一個(gè)全新的深度學(xué)習(xí)框架——計(jì)圖(Jittor)。Jittor是一個(gè)采用元算子表達(dá)神經(jīng)網(wǎng)絡(luò)計(jì)算單元、完全基于動(dòng)態(tài)編譯(Just-in-Time)的深度學(xué)習(xí)框架。

圖1 “計(jì)圖”通過元算子融合實(shí)現(xiàn)深度神經(jīng)網(wǎng)絡(luò)模型

深度學(xué)習(xí)采用的卷積神經(jīng)網(wǎng)絡(luò)是由算子(Operator)組成的一個(gè)計(jì)算網(wǎng)絡(luò)。由于架構(gòu)設(shè)計(jì)和不斷擴(kuò)充等原因,當(dāng)前深度學(xué)習(xí)框架有多達(dá)2000種算子,系統(tǒng)復(fù)雜,優(yōu)化和移植困難。Jittor則將算子運(yùn)算進(jìn)一步分解,形成了更加底層的三類20余種元算子閉包,目前神經(jīng)網(wǎng)絡(luò)常用算子均可以使用元算子的組合進(jìn)行表達(dá)。面向未來深度學(xué)習(xí)框架的發(fā)展趨勢(shì),Jittor利用元算子組合表達(dá)的優(yōu)勢(shì),提出統(tǒng)一計(jì)算圖進(jìn)行優(yōu)化,并從底層開始設(shè)計(jì)了一個(gè)全新的動(dòng)態(tài)編譯架構(gòu)。該架構(gòu)支持多種編譯器,實(shí)現(xiàn)了所有代碼的即時(shí)編譯和動(dòng)態(tài)運(yùn)行,確保了實(shí)現(xiàn)和優(yōu)化分離,大幅提升了應(yīng)用開發(fā)靈活性、可拓展性和可移植性。

圖2 “計(jì)圖”與其他平臺(tái)的計(jì)算圖特性對(duì)比

Jittor與國際主流平臺(tái)相比,具有多項(xiàng)先進(jìn)特性(圖2)。目前ResNet、VGG、SSD、DeepLab、LSGAN等多個(gè)網(wǎng)絡(luò)模型已經(jīng)在Jittor平臺(tái)實(shí)現(xiàn),可供用戶使用。與同類型框架相比,Jittor在收斂精度一致情況下,推理速度取得了10%-50%的性能提升(圖3)。

圖3 Jittor和PyTorch推理與訓(xùn)練速度對(duì)比

Jittor的研發(fā)得到了國家自然科學(xué)基金創(chuàng)新群體項(xiàng)目、北京信息科學(xué)與技術(shù)國家研究中心團(tuán)隊(duì)項(xiàng)目和清華-騰訊聯(lián)合實(shí)驗(yàn)室項(xiàng)目的資助。期望Jittor能為學(xué)界和業(yè)界提供一個(gè)靈活高效的深度學(xué)習(xí)平臺(tái),促進(jìn)人工智能的研究和應(yīng)用,賦能人工智能產(chǎn)業(yè)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    請(qǐng)問STM32如何移植Audio框架

    最近在學(xué)習(xí)音頻解碼,想用下Audio框架。 1、這個(gè)該如何移植到自己創(chuàng)建的BSP并對(duì)接到device框架中?看了官方移植文檔沒有對(duì)沒有對(duì)該部分的描述。 2、我只想實(shí)現(xiàn)
    發(fā)表于 09-25 07:17

    如何在機(jī)器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    1:基于深度學(xué)習(xí)的目標(biāo)檢測(cè)可定位已訓(xùn)練的目標(biāo)類別,并通過矩形框(邊界框)對(duì)其進(jìn)行標(biāo)識(shí)。 在討論人工智能(AI)或深度學(xué)習(xí)時(shí),經(jīng)常會(huì)出現(xiàn)“
    的頭像 發(fā)表于 09-10 17:38 ?666次閱讀
    如何在機(jī)器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>神經(jīng)網(wǎng)絡(luò)

    深度學(xué)習(xí)對(duì)工業(yè)物聯(lián)網(wǎng)有哪些幫助

    、實(shí)施路徑三個(gè)維度展開分析: 、深度學(xué)習(xí)如何突破工業(yè)物聯(lián)網(wǎng)的技術(shù)瓶頸? 1. 非結(jié)構(gòu)化數(shù)據(jù)處理:解鎖“沉睡數(shù)據(jù)”價(jià)值 傳統(tǒng)困境 :工業(yè)物聯(lián)網(wǎng)中70%以上的數(shù)據(jù)為非結(jié)構(gòu)化數(shù)據(jù)(如設(shè)備振
    的頭像 發(fā)表于 08-20 14:56 ?742次閱讀

    自動(dòng)駕駛中Transformer大模型會(huì)取代深度學(xué)習(xí)嗎?

    [首發(fā)于智駕最前沿微信公眾號(hào)]近年來,隨著ChatGPT、Claude、文心言等大語言模型在生成文本、對(duì)話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習(xí)”這
    的頭像 發(fā)表于 08-13 09:15 ?3896次閱讀
    自動(dòng)駕駛中Transformer大模型會(huì)取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>嗎?

    思嵐科技AI工業(yè)機(jī)器人開放底盤Phoebus P350全新發(fā)布:深度學(xué)習(xí)導(dǎo)航+300KG負(fù)載

    工業(yè)4.0時(shí)代,智能搬運(yùn)的“底盤力”決定效率天花板。 SLAMTEC全新推出 Phoebus P350工業(yè)級(jí)機(jī)器人底盤 ,以 “開放AI架構(gòu)+深度學(xué)習(xí)導(dǎo)航” 為核心,融合300KG超強(qiáng)負(fù)載、60cm
    的頭像 發(fā)表于 05-12 11:33 ?769次閱讀
    思嵐科技AI工業(yè)機(jī)器人開放底盤Phoebus P350<b class='flag-5'>全新</b>發(fā)布:<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>導(dǎo)航+300KG負(fù)載

    大模型時(shí)代的深度學(xué)習(xí)框架

    量是約為 25.63M,在ImageNet1K數(shù)據(jù)集上,使用單張消費(fèi)類顯卡 RTX-4090只需大約35~40個(gè)小時(shí) ,即可完成ResNet50模型的預(yù)訓(xùn)練。在 大模型時(shí)代 ,由于大模型參數(shù)規(guī)模龐大,無法跟CNN時(shí)代的小模型樣在單張顯卡上完成訓(xùn)練,需要構(gòu)建多張AI加速卡
    的頭像 發(fā)表于 04-25 11:43 ?640次閱讀
    大模型時(shí)代的<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>框架</b>

    百度飛槳框架3.0正式版發(fā)布

    、推理等任務(wù)都離不開深度學(xué)習(xí)框架的優(yōu)化與支撐。 飛槳框架3.0,從設(shè)計(jì)理念上實(shí)現(xiàn)了從底層硬件適配到頂層開發(fā)體驗(yàn)的全面進(jìn)化,在訓(xùn)練效率、性能、兼容性等關(guān)鍵指標(biāo)上建立了新標(biāo)桿。 其中, “
    的頭像 發(fā)表于 04-02 19:03 ?1037次閱讀
    百度飛槳<b class='flag-5'>框架</b>3.0正式版發(fā)布

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對(duì)深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對(duì)輸入的數(shù)據(jù)做次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)框架,可以
    的頭像 發(fā)表于 04-02 18:21 ?1267次閱讀

    STM32如何移植Audio框架?

    最近在學(xué)習(xí)音頻解碼,想用下Audio框架。 1、這個(gè)該如何移植到自己創(chuàng)建的BSP并對(duì)接到device框架中?看了官方移植文檔沒有對(duì)沒有對(duì)該部分的描述。 2、我只想實(shí)現(xiàn)
    發(fā)表于 04-01 08:08

    如何排除深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學(xué)習(xí)工作臺(tái)上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    ,并廣泛介紹了深度學(xué)習(xí)在兩個(gè)主要軍事應(yīng)用領(lǐng)域的應(yīng)用:情報(bào)行動(dòng)和自主平臺(tái)。最后,討論了相關(guān)的威脅、機(jī)遇、技術(shù)和實(shí)際困難。主要發(fā)現(xiàn)是,人工智能技術(shù)并非無所不能,需要謹(jǐn)慎應(yīng)用,同時(shí)考慮到其局限性、網(wǎng)絡(luò)安全威脅以及
    的頭像 發(fā)表于 02-14 11:15 ?810次閱讀

    隔離電源方案電路框架

    隔離電源方案電路框架
    發(fā)表于 02-13 15:18 ?10次下載

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度
    的頭像 發(fā)表于 02-12 15:15 ?1328次閱讀

    百度深度學(xué)習(xí)專利申請(qǐng)量位列全球第

    近日,全球領(lǐng)先的知識(shí)產(chǎn)權(quán)解決方案提供商Questel,發(fā)布全球深度學(xué)習(xí)專利全景報(bào)告。
    的頭像 發(fā)表于 01-15 09:29 ?806次閱讀

    Triton編譯器在機(jī)器學(xué)習(xí)中的應(yīng)用

    1. Triton編譯器概述 Triton編譯器是NVIDIA Triton推理服務(wù)平臺(tái)的部分,它負(fù)責(zé)將深度學(xué)習(xí)模型轉(zhuǎn)換為優(yōu)化的格式,以便在NVIDIA GPU上高效運(yùn)行。Triton編譯器支持
    的頭像 發(fā)表于 12-24 18:13 ?1605次閱讀