chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

利用SHAP實現(xiàn)機器學習模型的輸出預測

汽車玩家 ? 來源:人工智能遇見磐創(chuàng) ? 作者:人工智能遇見磐創(chuàng) ? 2020-05-04 18:09 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

解釋產(chǎn)生特定NBA球員預測薪水的特征(github)

利用SHAP實現(xiàn)機器學習模型的輸出預測

我最喜歡的庫之一是SHAP,它是解釋機器學習模型生成的輸出不可或缺的工具。 SHAP是幾種不同的當前解釋模型的頂點,并且通過為每個特征分配重要性值來表示用于解釋模型預測的統(tǒng)一框架。反過來,可以繪制這些重要性值,并用于產(chǎn)生任何人都可以輕易解釋的漂亮可視化。在您閱讀時,您會注意到主題是可解釋性,以及為什么它在機器學習中如此迫切。

在本文中,我提供了一個外行人對其作者Scott Lundberg和Su-In Lee的原始論文的評論

目的

線性模型易于解釋。 考慮用于預測NBA球員薪水的經(jīng)典線性回歸模型(假設(shè)薪水完全基于每場比賽得分):

利用SHAP實現(xiàn)機器學習模型的輸出預測

我們簡單地將其解釋為β1,即X對Y單位增加的平均影響。換句話說,如果凱文杜蘭特得到27.5分,那么我們所要做的就是乘以β1來預測他的薪水。 使用線性模型,很明顯模型如何達到預測。

但是神經(jīng)網(wǎng)絡(luò)呢,那里有重復的矩陣乘法和激活函數(shù)? 我們?nèi)绾卧谳敵龅纳舷挛闹薪忉屵@一點?

利用SHAP實現(xiàn)機器學習模型的輸出預測

隨著我們轉(zhuǎn)向更復雜的模型,具有更高的準確性,我們發(fā)現(xiàn)越來越難以解釋這些模型如何產(chǎn)生預測。 由于以下幾個原因,這是一個岌岌可危的困境:

·模型偏差是一個重要問題,因為它們最終可能會對決策產(chǎn)生不公平的影響。 一些數(shù)據(jù)存在內(nèi)在偏差,特別是在涉及種族和性別偏見時,這會對模型的預測產(chǎn)生負面影響。 由于沒有好的方法來解釋模型如何做出決定,因此很難確定這些固有的偏見。

·模型改進也很困難如果您不知道要改進什么。當然,您可以調(diào)整超參數(shù),直到獲得最佳分數(shù),但您擁有的數(shù)據(jù)類型更為重要。了解模型中不同特征的價值可為數(shù)據(jù)收集提供有價值的反饋,告知我們哪些類型的數(shù)據(jù)最重要.

·用戶信任對于采用人工智能系統(tǒng)非常重要。 在人工智能治理中心最近的一份報告中,作者報告說:"有更多的美國人認為高級機器智能會比那些認為對人類有益的人有害。"復雜模型的可解釋性有助于 更好的理解,建立模型如何做出決策的直覺,并最終產(chǎn)生用戶信任。

添加功能歸因方法

為了解釋更復雜的模型,我們需要一個更接近原始模型的簡單解釋模型。

假設(shè)我們有一個形式為f(x)的復雜模型,那么解釋模型g(z')≈f(x)。

利用SHAP實現(xiàn)機器學習模型的輸出預測

稍微分解g(z'),我們將一些效應φ?歸因于每個特征z'。 通過總結(jié)所有這些效果及其特征,我們可以近似原始模型的輸出。 這被定義為附加特征歸屬方法。 事實證明,其他當前的解釋模型遵循相同的解釋模型,允許它們?nèi)拷y(tǒng)一到一個單一的框架中。

附加特征歸屬方法的屬性

1.局部精度:最重要的屬性之一是解釋模型能夠匹配原始模型的輸出。

2.缺失:如果缺少特征,則該特征沒有效果,或φ?= 0。

3.一致性:如果模型發(fā)生變化,使得特征貢獻增加或保持不變,那么特征屬性或φ?不應減少。

這導致我們SHAP值,它統(tǒng)一了以前的方法,并展示了上述屬性。

SHAP值

SHAP值(φ?)用于描述特征的重要性。 請考慮以下圖表:

利用SHAP實現(xiàn)機器學習模型的輸出預測

f(x)是模型預測的輸出,E[f(z)]是如果沒有特征則預測的基值。 換句話說,E[f(z)]只是平均模型輸出。

當我們包括一個特征x 1,然后φ1,解釋我們?nèi)绾螐幕档叫碌念A測值,現(xiàn)在由E [f(z)|給出。 z 1 = x 1]。 對剩余的變量x 1,x 2,x 3重復這個過程,估計φ1,φ2和φ3的SHAP值,顯示模型最終如何到達預測輸出f(x)。

不同口味的SHAP(different favours of SHAP)

SHAP有多種實現(xiàn)方式,每種方式都適用于特定的模型類型,可以實現(xiàn)更快的逼近。

·TreeExplainer

TreeExplainer專為樹集合方法開發(fā),如XGBoost,LightGBM或CatBoost。

·DeepExplainer

DeepExplainer是為深度學習模型開發(fā)的,支持TensorFlow / Keras。

·GradientExplainer

GradientExplainer也是為深度學習模型中的SHAP值而開發(fā)的,但速度比DeepExplainer慢,并且做出了不同的假設(shè)。 此方法基于Integrated Gradient歸因方法,并支持TensorFlow / Keras / PyTorch。

·KernelExplainer

KernelExplainer使用加權(quán)線性回歸近似任何類型模型的SHAP值。

使用特定于模型類型的算法(TreeExplainer,DeepExplainer)而不是通用KernelExplainer更快更有效。

總結(jié)

作者發(fā)現(xiàn)人類解釋和SHAP解釋之間的關(guān)聯(lián)比任何其他方法更強,這表明了SHAP的強大和直觀性。 計算出的SHAP值很容易在美觀,簡單的圖中顯示,這些圖解釋了特征如何影響特定預測。 這使得SHAP成為一個令人信服的工具,可以自信地解釋和解釋任何模型。

有關(guān)如何實現(xiàn)SHAP的教程,請查看我的筆記本,看看我們?nèi)绾谓忉対u變提升樹的預測結(jié)果。 SHAP github還提供了很多資源,可以提供有關(guān)如何實現(xiàn)DeepExplainer,KernelExplainer和其他有用功能的更多示例。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4743

    瀏覽量

    96900
  • 機器學習
    +關(guān)注

    關(guān)注

    66

    文章

    8532

    瀏覽量

    136017
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    超小型Neuton機器學習模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應用.

    Neuton 是一家邊緣AI 公司,致力于讓機器 學習模型更易于使用。它創(chuàng)建的模型比競爭對手的框架小10 倍,速度也快10 倍,甚至可以在最先進的邊緣設(shè)備上進行人工智能處理。在這篇博文
    發(fā)表于 07-31 11:38

    模型在半導體行業(yè)的應用可行性分析

    的應用,比如使用機器學習分析數(shù)據(jù),提升良率。 這一些大模型是否真的有幫助 能夠在解決工程師的知識斷層問題 本人純小白,不知道如何涉足這方面 應該問什么大模型比較好,或者是看什么視頻能夠
    發(fā)表于 06-24 15:10

    邊緣計算中的機器學習:基于 Linux 系統(tǒng)的實時推理模型部署與工業(yè)集成!

    你好,旅行者!歡迎來到Medium的這一角落。在本文中,我們將把一個機器學習模型(神經(jīng)網(wǎng)絡(luò))部署到邊緣設(shè)備上,利用從ModbusTCP寄存器獲取的實時數(shù)據(jù)來
    的頭像 發(fā)表于 06-11 17:22 ?617次閱讀
    邊緣計算中的<b class='flag-5'>機器</b><b class='flag-5'>學習</b>:基于 Linux 系統(tǒng)的實時推理<b class='flag-5'>模型</b>部署與工業(yè)集成!

    請問是否可以在模型服務器中使用REST請求OpenVINO?預測?

    是否可以在模型服務器中使用 REST 請求OpenVINO?預測?
    發(fā)表于 03-05 08:06

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習
    的頭像 發(fā)表于 02-13 09:39 ?531次閱讀

    【ELF 2學習板試用】利用RKNN-Toolkit2實現(xiàn)rknn模型轉(zhuǎn)換

    為rknn模型,然后在板端利用RKNN-Toolkit2-Lite2運行rknn模型實現(xiàn)GPU加速。而rknn模型的轉(zhuǎn)換則需要用的瑞芯微官
    發(fā)表于 02-09 17:57

    信道預測模型在數(shù)據(jù)通信中的作用

    在現(xiàn)代通信系統(tǒng)中,數(shù)據(jù)傳輸?shù)目煽啃院托适呛饬肯到y(tǒng)性能的關(guān)鍵指標。信道預測模型作為通信系統(tǒng)中的一個核心組件,其作用在于預測信道條件的變化,從而優(yōu)化數(shù)據(jù)傳輸策略,提高通信質(zhì)量。 信道預測
    的頭像 發(fā)表于 01-22 17:16 ?1170次閱讀

    基于移動自回歸的時序擴散預測模型

    回歸取得了比傳統(tǒng)基于噪聲的擴散模型更好的生成效果,并且獲得了人工智能頂級會議 NeurIPS 2024 的 best paper。 然而在時間序列預測領(lǐng)域,當前主流的擴散方法還是傳統(tǒng)的基于噪聲的方法,未能充分利用自回歸技術(shù)
    的頭像 發(fā)表于 01-03 14:05 ?1486次閱讀
    基于移動自回歸的時序擴散<b class='flag-5'>預測</b><b class='flag-5'>模型</b>

    【「具身智能機器人系統(tǒng)」閱讀體驗】2.具身智能機器人大模型

    中取得了令人矚目的效果。 閱讀感悟 從傳統(tǒng)的手動編程到借助大模型實現(xiàn)智能化、自主化,從單一模態(tài)的交互到多模態(tài)信息的深度融合,再到擴散模型的應用,機器人控制技術(shù)正在以驚人的速度進化。這不
    發(fā)表于 12-29 23:04

    《具身智能機器人系統(tǒng)》第7-9章閱讀心得之具身智能機器人與大模型

    醫(yī)療領(lǐng)域,手術(shù)輔助機器人需要毫米級的精確控制,書中有介紹基于視覺伺服的實時控制算法,以及如何利用模型優(yōu)化手術(shù)路徑規(guī)劃。工業(yè)場景中,協(xié)作機器人面臨的主要挑戰(zhàn)是快速適應新工藝流程。具身智
    發(fā)表于 12-24 15:03

    【「大模型啟示錄」閱讀體驗】營銷領(lǐng)域大模型的應用

    用戶體驗和滿意度,進而增加轉(zhuǎn)化率。通過精準匹配消費者需求和產(chǎn)品特性,大模型幫助企業(yè)實現(xiàn)更高效的市場滲透和銷售增長。 大模型能夠處理和分析大量的市場數(shù)據(jù),預測市場趨勢和消費者需求的變化。
    發(fā)表于 12-24 12:48

    AI模型部署邊緣設(shè)備的奇妙之旅:目標檢測模型

    提升一倍 導出模型將后處理包含在網(wǎng)絡(luò)中,預測直接輸出 box 結(jié)果,無需二次開發(fā),遷移成本更低,端到端預測速度提升10%-20%。 2.2 模型
    發(fā)表于 12-19 14:33

    ASR和機器學習的關(guān)系

    自動語音識別(ASR)技術(shù)的發(fā)展一直是人工智能領(lǐng)域的一個重要分支,它使得機器能夠理解和處理人類語言。隨著機器學習(ML)技術(shù)的迅猛發(fā)展,ASR系統(tǒng)的性能和準確性得到了顯著提升。 ASR技術(shù)概述 自動
    的頭像 發(fā)表于 11-18 15:16 ?1054次閱讀

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統(tǒng)具有人的學習能力以便實現(xiàn)人工智能。因為沒有學習能力的系統(tǒng)很難被認為是具有智能
    的頭像 發(fā)表于 11-16 01:07 ?1389次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    NPU與機器學習算法的關(guān)系

    在人工智能領(lǐng)域,機器學習算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習
    的頭像 發(fā)表于 11-15 09:19 ?1712次閱讀