chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)模型存在嚴(yán)重缺陷?

倩倩 ? 來源:文財(cái)網(wǎng) ? 2020-07-22 15:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

多年來,許多人工智能發(fā)燒友和研究人員一直承諾,機(jī)器學(xué)習(xí)將改變現(xiàn)代醫(yī)學(xué)。已經(jīng)開發(fā)了成千上萬種算法來診斷癌癥,心臟病和精神病等疾病?,F(xiàn)在,正在通過識別肺部CT掃描和X射線圖像中的模式來訓(xùn)練算法來檢測COVID-19。

這些模型中的許多模型旨在預(yù)測哪些患者的結(jié)局最嚴(yán)重,哪些患者需要呼吸機(jī)。激動(dòng)是顯而易見的。如果這些模型是準(zhǔn)確的,它們可以為醫(yī)生提供測試和治療患者的巨大優(yōu)勢。

但是,使用AI輔助藥物治療真正的COVID-19患者的吸引力似乎還很遙遠(yuǎn)。世界各地的一組統(tǒng)計(jì)學(xué)家都對絕大多數(shù)機(jī)器學(xué)習(xí)模型的質(zhì)量以及如果醫(yī)院盡快采用它們可能造成的危害表示關(guān)注。

“ [它]使我們很多人感到恐懼,因?yàn)槲覀冎揽梢允褂媚P蛠碜龀鲠t(yī)療決定,”荷蘭烏得勒支大學(xué)醫(yī)學(xué)中心的醫(yī)學(xué)統(tǒng)計(jì)學(xué)家Maarten van Smeden說?!叭绻P筒缓?,他們可能會(huì)使醫(yī)療決策更糟。因此它們實(shí)際上可以傷害患者。”

Van Smeden與一大批國際研究人員共同領(lǐng)導(dǎo)一個(gè)項(xiàng)目,以使用標(biāo)準(zhǔn)化標(biāo)準(zhǔn)評估COVID-19模型。該項(xiàng)目是BMJ的首次現(xiàn)場審查,這意味著他們的40名審查員(并且正在不斷增長)的團(tuán)隊(duì)將在發(fā)布新模型時(shí)積極更新其審查。

到目前為止,他們對COVID-19機(jī)器學(xué)習(xí)模型的評論并不理想:他們嚴(yán)重缺乏數(shù)據(jù),并且缺乏來自廣泛研究領(lǐng)域的必要專業(yè)知識。但是,新的COVID-19算法面臨的問題根本就不是新問題:醫(yī)學(xué)研究中的AI模型已經(jīng)存在嚴(yán)重缺陷,多年來,van Smeden等統(tǒng)計(jì)學(xué)家一直試圖發(fā)出警告以扭轉(zhuǎn)局勢。

折磨數(shù)據(jù)

在COVID-19大流行之前,范德比爾特大學(xué)的生物統(tǒng)計(jì)學(xué)家弗蘭克·哈雷爾(Frank Harrell)環(huán)游全國,與醫(yī)學(xué)研究人員就當(dāng)前醫(yī)學(xué)AI模型的廣泛問題進(jìn)行了討論。他經(jīng)常借用著名經(jīng)濟(jì)學(xué)家的話來描述這個(gè)問題:醫(yī)學(xué)研究人員正在使用機(jī)器學(xué)習(xí)來“折磨他們的數(shù)據(jù),直到吐出口供為止”。

這些數(shù)字證明了Harrell的主張,這表明絕大多數(shù)醫(yī)學(xué)算法幾乎不符合基本質(zhì)量標(biāo)準(zhǔn)。2019年10月,由英國伯明翰大學(xué)的劉曉軒和Alastair Denniston領(lǐng)導(dǎo)的一組研究人員發(fā)表了第一個(gè)系統(tǒng)綜述,旨在回答這一時(shí)髦卻難以捉摸的問題:機(jī)器在診斷患者方面是否能比患者更好甚至更好?人類醫(yī)生?他們得出的結(jié)論是,從醫(yī)學(xué)成像檢測疾病時(shí),大多數(shù)機(jī)器學(xué)習(xí)算法都可以與人類醫(yī)生媲美。然而,還有另一個(gè)更健壯和令人震驚的發(fā)現(xiàn)-自2012年以來,在發(fā)表的關(guān)于疾病檢測算法的總共20,530項(xiàng)研究中,只有不到1%的方法學(xué)嚴(yán)謹(jǐn)性足以納入其分析。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 醫(yī)療
    +關(guān)注

    關(guān)注

    8

    文章

    1939

    瀏覽量

    60922
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3618

    瀏覽量

    51543
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8532

    瀏覽量

    136017
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    超小型Neuton機(jī)器學(xué)習(xí)模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機(jī)器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競爭對手的框架小10 倍,速度也快10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文
    發(fā)表于 07-31 11:38

    通過NVIDIA Cosmos模型增強(qiáng)機(jī)器人學(xué)習(xí)

    通用機(jī)器人的時(shí)代已經(jīng)到來,這得益于機(jī)械電子技術(shù)和機(jī)器人 AI 基礎(chǔ)模型的進(jìn)步。但目前機(jī)器人技術(shù)的發(fā)展仍面臨一個(gè)關(guān)鍵挑戰(zhàn):機(jī)器人需要大量的訓(xùn)練
    的頭像 發(fā)表于 07-14 11:49 ?594次閱讀
    通過NVIDIA Cosmos<b class='flag-5'>模型</b>增強(qiáng)<b class='flag-5'>機(jī)器人學(xué)習(xí)</b>

    模型在半導(dǎo)體行業(yè)的應(yīng)用可行性分析

    有沒有這樣的半導(dǎo)體專用大模型,能縮短芯片設(shè)計(jì)時(shí)間,提高成功率,還能幫助新工程師更快上手?;蛘哕浻布梢栽谠O(shè)計(jì)和制造環(huán)節(jié)確實(shí)有實(shí)際應(yīng)用。會(huì)不會(huì)存在AI缺陷檢測。 能否應(yīng)用在工藝優(yōu)化和預(yù)測性維護(hù)中
    發(fā)表于 06-24 15:10

    邊緣計(jì)算中的機(jī)器學(xué)習(xí):基于 Linux 系統(tǒng)的實(shí)時(shí)推理模型部署與工業(yè)集成!

    你好,旅行者!歡迎來到Medium的這一角落。在本文中,我們將把一個(gè)機(jī)器學(xué)習(xí)模型(神經(jīng)網(wǎng)絡(luò))部署到邊緣設(shè)備上,利用從ModbusTCP寄存器獲取的實(shí)時(shí)數(shù)據(jù)來預(yù)測一臺復(fù)古音頻放大器的當(dāng)前健康狀況。你將
    的頭像 發(fā)表于 06-11 17:22 ?617次閱讀
    邊緣計(jì)算中的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>:基于 Linux 系統(tǒng)的實(shí)時(shí)推理<b class='flag-5'>模型</b>部署與工業(yè)集成!

    十大鮮為人知卻功能強(qiáng)大的機(jī)器學(xué)習(xí)模型

    本文轉(zhuǎn)自:QuantML當(dāng)我們談?wù)?b class='flag-5'>機(jī)器學(xué)習(xí)時(shí),線性回歸、決策樹和神經(jīng)網(wǎng)絡(luò)這些常見的算法往往占據(jù)了主導(dǎo)地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強(qiáng)大的算法,它們能夠
    的頭像 發(fā)表于 04-02 14:10 ?805次閱讀
    十大鮮為人知卻功能強(qiáng)大的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>模型</b>

    機(jī)器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 02-13 09:39 ?531次閱讀

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 01-25 17:05 ?1018次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開發(fā)環(huán)境

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】2.具身智能機(jī)器人大模型

    近年來,人工智能領(lǐng)域的大模型技術(shù)在多個(gè)方向上取得了突破性的進(jìn)展,特別是在機(jī)器人控制領(lǐng)域展現(xiàn)出了巨大的潛力。在“具身智能機(jī)器人大模型”部分,作者研究并探討了大
    發(fā)表于 12-29 23:04

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    醫(yī)療領(lǐng)域,手術(shù)輔助機(jī)器人需要毫米級的精確控制,書中有介紹基于視覺伺服的實(shí)時(shí)控制算法,以及如何利用大模型優(yōu)化手術(shù)路徑規(guī)劃。工業(yè)場景中,協(xié)作機(jī)器人面臨的主要挑戰(zhàn)是快速適應(yīng)新工藝流程。具身智能通過在線
    發(fā)表于 12-24 15:03

    cmp在機(jī)器學(xué)習(xí)中的作用 如何使用cmp進(jìn)行數(shù)據(jù)對比

    機(jī)器學(xué)習(xí)領(lǐng)域,"cmp"這個(gè)術(shù)語可能并不是一個(gè)常見的術(shù)語,它可能是指"比較"(comparison)的縮寫。 比較在機(jī)器學(xué)習(xí)中的作用 模型
    的頭像 發(fā)表于 12-17 09:35 ?1223次閱讀

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺流程

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺是一個(gè)復(fù)雜而系統(tǒng)的過程,涉及數(shù)據(jù)收集、處理、特征提取、模型訓(xùn)練、評估、部署和監(jiān)控等多個(gè)環(huán)節(jié)。
    的頭像 發(fā)表于 12-14 10:34 ?619次閱讀

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)分析技術(shù)的創(chuàng)新源之一,
    的頭像 發(fā)表于 11-16 01:07 ?1389次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點(diǎn) NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項(xiàng)目中提出,旨在為TensorFlow框架提供專用的硬件加速。NPU的設(shè)計(jì)目標(biāo)是提高機(jī)器學(xué)習(xí)算法的運(yùn)行效率,特別是在處理大規(guī)模數(shù)據(jù)集和復(fù)雜神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 09:19 ?1716次閱讀

    LLM和傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    在人工智能領(lǐng)域,LLM(Large Language Models,大型語言模型)和傳統(tǒng)機(jī)器學(xué)習(xí)是兩種不同的技術(shù)路徑,它們在處理數(shù)據(jù)、模型結(jié)構(gòu)、應(yīng)用場景等方面有著顯著的差異。 1.
    的頭像 發(fā)表于 11-08 09:25 ?2562次閱讀

    ubuntu ping 開發(fā)板存在嚴(yán)重的丟包情況,請問該怎么解決?

    我現(xiàn)在在學(xué)習(xí)一個(gè)嵌入式Linux的項(xiàng)目,要實(shí)現(xiàn)主機(jī),虛擬機(jī),開發(fā)板三者的通信,我的一系列設(shè)置應(yīng)該是沒問題的。但是在ubuntu上ping開發(fā)板時(shí)總是會(huì)出現(xiàn)很嚴(yán)重的丟包情況,有時(shí)甚至?xí)蠪rom
    發(fā)表于 11-01 16:50