chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)算法使用機(jī)器來(lái)了解給定的數(shù)據(jù)集

倩倩 ? 來(lái)源:文財(cái)網(wǎng) ? 2020-09-16 17:05 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

AI包括自然語(yǔ)言處理,對(duì)象圖像識(shí)別以及通過(guò)試圖模仿大腦認(rèn)知功能的神經(jīng)網(wǎng)絡(luò)模型進(jìn)行模式識(shí)別等功能。

機(jī)器學(xué)習(xí)一詞經(jīng)常與AI互換使用,盡管有明顯的區(qū)別。機(jī)器學(xué)習(xí)算法使用機(jī)器來(lái)了解給定的數(shù)據(jù)集。機(jī)器學(xué)習(xí)的一個(gè)子集包括深度學(xué)習(xí),它在網(wǎng)絡(luò)安全領(lǐng)域顯示出了巨大的希望

AI和ML不僅用于下一代SOC中,以增強(qiáng)檢測(cè)和預(yù)防活動(dòng),而且越來(lái)越多地用于增強(qiáng)事件響應(yīng)措施,例如遏制措施,故障單創(chuàng)建和用戶(hù)參與分類(lèi)和/或驗(yàn)證可疑行為。AI和ML的應(yīng)用減少了每次警報(bào)所花費(fèi)的時(shí)間,并改善了平均檢測(cè)時(shí)間和平均修復(fù)時(shí)間。

自動(dòng)化與編排

自動(dòng)化和編排是NextGen SOC的基本組件。通過(guò)將高速機(jī)器搜索與(工具和平臺(tái)的)高級(jí)控件相結(jié)合,分析人員可以使用更多數(shù)據(jù),從而使他們變得更有效率,并幫助他們提供更多上下文相關(guān)的結(jié)果進(jìn)行補(bǔ)救。這減少了威脅計(jì)數(shù),并加快了分析人員進(jìn)行評(píng)估和響應(yīng)的能力。高級(jí)控件還可以防御零時(shí)差威脅,并提供有關(guān)此類(lèi)威脅的更高保真度的數(shù)據(jù)。這些結(jié)果有兩個(gè)主要好處:與傳統(tǒng)的托管安全服務(wù)相比,安全性更高,而相同成本的價(jià)值更高。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】視覺(jué)實(shí)現(xiàn)的基礎(chǔ)算法的應(yīng)用

    視覺(jué)巡線,展示了如何從數(shù)據(jù)采集、模型訓(xùn)練到機(jī)器人部署的完整流程。 值得注意的是,深度學(xué)習(xí)模型的實(shí)時(shí)性對(duì)機(jī)器人計(jì)算資源提出了較高要求,優(yōu)化模型(如TensorRT加速)是實(shí)際部署的關(guān)鍵。
    發(fā)表于 05-03 19:41

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】機(jī)器人入門(mén)的引路書(shū)

    ROS的全稱(chēng):Robot Operating System 機(jī)器人操作系統(tǒng) ROS的 目的 :ROS支持通用庫(kù),是通信總線,協(xié)調(diào)多個(gè)傳感器 為了解機(jī)器人里各廠商模塊不通用的問(wèn)題,讓機(jī)器
    發(fā)表于 04-30 01:05

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合**

    機(jī)器學(xué)習(xí)算法,解決傳感器數(shù)據(jù)采集難題! 1. nRF54系列支持OTA嗎? 答:支持!nRF54L系列基于Zephyr的MCUBOOT和SMP DFU庫(kù),支持BLE和UART等多種OT
    發(fā)表于 04-01 00:00

    請(qǐng)問(wèn)STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?
    發(fā)表于 03-13 07:34

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器
    的頭像 發(fā)表于 02-13 09:39 ?358次閱讀

    《具身智能機(jī)器人系統(tǒng)》第10-13章閱讀心得之具身智能機(jī)器人計(jì)算挑戰(zhàn)

    章深入分析了DNN的安全威脅。逃逸攻擊通過(guò)向輸入數(shù)據(jù)添加人眼難以察覺(jué)的擾動(dòng),誘導(dǎo)模型做出錯(cuò)誤判斷。投毒攻擊則通過(guò)污染訓(xùn)練數(shù)據(jù),在模型學(xué)習(xí)階段植入后門(mén)。探索攻擊更具隱蔽性,它利用模型決
    發(fā)表于 01-04 01:15

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開(kāi)發(fā)生物學(xué)數(shù)據(jù)機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1180次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+初品的體驗(yàn)

    學(xué)習(xí)資源,以培養(yǎng)更多的專(zhuān)業(yè)人才。隨著具身智能機(jī)器人技術(shù)對(duì)社會(huì)的影響越來(lái)越大,該書(shū)還可以向公眾普及相關(guān)的知識(shí),以提升社會(huì)對(duì)新技術(shù)的認(rèn)知和接受度,從而為技術(shù)的發(fā)展創(chuàng)造良好的社會(huì)環(huán)境。 隨著具身智能機(jī)器人技術(shù)
    發(fā)表于 12-20 19:17

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)中主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對(duì)數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智
    的頭像 發(fā)表于 11-16 01:07 ?959次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點(diǎn) NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項(xiàng)目中提出,旨在為T(mén)ensorFlow框架提供專(zhuān)用的硬件加速。NPU的設(shè)計(jì)目標(biāo)是提高機(jī)器學(xué)習(xí)算法的運(yùn)行效率,特別是在處理
    的頭像 發(fā)表于 11-15 09:19 ?1208次閱讀

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類(lèi)似人類(lèi)智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法數(shù)據(jù)學(xué)習(xí)
    發(fā)表于 10-24 17:22 ?2972次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    LIBS結(jié)合機(jī)器學(xué)習(xí)算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對(duì)象,研究激光誘導(dǎo)擊穿光譜結(jié)合機(jī)器學(xué)習(xí)的茶葉鑒別方法。將茶葉茶,水數(shù)據(jù)融合可有效鑒別春茶采收期,且數(shù)據(jù)融合后表現(xiàn)出更好的穩(wěn)定性和魯棒性,LIBS
    的頭像 發(fā)表于 10-22 18:05 ?638次閱讀
    LIBS結(jié)合<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】時(shí)間序列的信息提取

    個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預(yù)測(cè)任務(wù)。 特征工程(Feature Engineering)是將數(shù)據(jù)轉(zhuǎn)換為更好地表示潛在問(wèn)題的特征,從而提高
    發(fā)表于 08-17 21:12

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 時(shí)間序列的信息提取

    本人有些機(jī)器學(xué)習(xí)的基礎(chǔ),理解起來(lái)一點(diǎn)也不輕松,加油。 作者首先說(shuō)明了時(shí)間序列的信息提取是時(shí)間序列分析的一個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析
    發(fā)表于 08-14 18:00

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 了解時(shí)間序列

    收到《時(shí)間序列與機(jī)器學(xué)習(xí)》一書(shū),彩色印刷,公式代碼清晰,非常精美。感謝作者,感謝電子發(fā)燒友提供了一個(gè)讓我學(xué)習(xí)時(shí)間序列及應(yīng)用的機(jī)會(huì)! 前言第一段描述了編寫(xiě)背景: 由此可知,這是一本關(guān)于時(shí)間序列進(jìn)行大
    發(fā)表于 08-11 17:55