chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習接近芯片算力極限?如何擺脫被淘汰的命運

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2020-10-30 08:13 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

關于深度學習,它正在快速接近其極限。雖然事實可能的確如此,但我們仍未能在日常生活中感受到全面部署深度學習的影響。

MIT:算力將探底,算法需改革

MIT 發(fā)出警告:深度學習正在接近現有芯片的算力極限,如果不變革算法,深度學習恐難再進步。

根據麻省理工學院,MIT-IBM Watson AI 實驗室,Underwood 國際學院和巴西利亞大學的研究人員在最近的研究中發(fā)現,持續(xù)不斷的進步將需要通過改變現有技術或通過尚未發(fā)現的新方法來更有效地使用深度學習方法。

目前深度學習的繁榮過度依賴算力的提升,在后摩爾定律時代可能遭遇發(fā)展瓶頸,在算法改進上還需多多努力。

深度學習不是偶然的計算代價,而是設計的代價。共同的靈活性使它能夠出色地建模各種現象,并且性能優(yōu)于專家模型,這也使其在計算上的成本大大提高。

研究人員估計,三年的算法改進相當于計算能力提高 10 倍??傮w而言,在深度學習的許多領域中,訓練模型的進步取決于所使用的計算能力的大幅度提高。另一種可能性是,要改善算法本身可能需要互補地提高計算能力。

在研究過程中,研究人員還對預測進行了推斷,以了解達到各種理論基準所需的計算能力以及相關的經濟和環(huán)境成本。

即使是最樂觀的計算,要降低 ImageNet 上的圖像分類錯誤率,也需要進行 10 的五次方以上的計算。

根據多項式和指數模型的預測,通過深度學習獲得相應性能基準所需的算力(以 Gflops 為單位),碳排放量和經濟成本,最樂觀的估計,ImageNet 分類誤差要想達到 1%,需要 10^28 Gflops 的算力,這對硬件來說是不小的壓力。

爆炸式增長結束,頂部提升有機會

用于深度學習模型的計算能力的爆炸式增長已經結束了,并為各種任務的計算機性能樹立了新的基準。但是這些計算限制的可能影響迫使機器學習轉向比深度學習更高效的技術。

過去算力的提升歸納了兩個原因:

一個是底部的發(fā)展,即計算機部件的小型化,其受摩爾定律制約;

另一個是頂部的發(fā)展,是上面提到的軟件、算法、硬件架構的統(tǒng)稱。

在后摩爾定律時代,提升計算性能的方法,雖然底部已經沒有太多提升的空間,但頂部還有機會。

在軟件層面,可以通過性能工程(performance engineering)提高軟件的效率,改變傳統(tǒng)軟件的開發(fā)策略,盡可能縮短軟件運行時間,而不是縮短軟件開發(fā)時間。另外,性能工程還可以根據硬件的情況進行軟件定制,如利用并行處理器和矢量單元。

在算法層面,在已有算法上的改進是不均勻的,而且具有偶然性,大量算法進展可能來源于新的問題領域、可擴展性問題、根據硬件定制算法。

在硬件層面,由于摩爾定律的制約,顯然需要改進的是硬件的架構,主要問題就是如何簡化處理器和利用應用程序的并行性。

通過簡化處理器,可以將復雜的處理核替換為晶體管數量需求更少的簡單處理核。由此釋放出的晶體管預算可重新分配到其他用途上,比如增加并行運行的處理核的數量,這將大幅提升可利用并行性問題的效率。

深度學習時代 AI 模型需規(guī)模化擴展

現代 AI 模型需要消耗大量電力,而且對電力的需求正以驚人的速度增長。在深度學習時代,構建一流 AI 模型所需要的計算資源平均每 3.4 個月翻一番。

在當今以深度學習為中心的研究范式當中,AI 的主要進步主要依賴于模型的規(guī)?;瘮U展:數據集更大、模型更大、計算資源更大。

在訓練過程中,神經網絡需要為每一條數據執(zhí)行一整套冗長的數學運算(正向傳播與反向傳播),并以復雜的方式更新模型參數。

在現實環(huán)境中部署并運行 AI 模型,所帶來的能源消耗量甚至高于訓練過程。實際上,神經網絡全部算力成本中的 80%到 90%來自推理階段,而非訓練階段。

因此,數據集規(guī)模越大,與之對應的算力與能源需求也在飛速增長。模型中包含的參數量越大,推理階段所帶來的電力需求就越夸張。

深度學習是 AI 核心,但局限性明顯

AI 領域需要在根本上做出長期轉變。需要退后一步,承認單純建立越來越龐大的神經網絡并不是通往廣義智能的正確路徑。

深度學習是近年來人工智能技術發(fā)展的核心,雖然取得了巨大成功,但它具有明顯的局限性。與人類視覺系統(tǒng)相比,深度學習在通用性、靈活性和適應性上要差很多,而在遇到復雜的自然圖像時,深度學習可能還會遇到機制性困難。

研究人員表示,目前形式的深度神經網絡似乎不太可能是未來建立通用智能機器或理解思維的最佳解決方案,但深度學習的很多機制在未來仍會繼續(xù)存在。

深度網絡還存在巨大挑戰(zhàn),而我們要實現通用人工智能和理解生物視覺系統(tǒng),就必須克服這些挑戰(zhàn)。

雖然深度網絡會是解決方案的一部分,但還需要涉及組合原則和因果模型的互補方法,以捕捉數據的基本結構。此外,面對組合性爆炸,需要要再次思考如何訓練和評估視覺算法。

每一次人工智能低谷來臨之前,都會有科學家夸大和炒作他們創(chuàng)造的潛力,僅僅說他們的算法就能夠很好地完成某項任務是不夠的。

對大多數問題來說,深度學習并不是正確的解決方法,不要試圖為所有的問題尋找通用人工智能解決方案,因為它根本就不存在。

結尾:

深度學習的發(fā)展可能已達極限,但其影響還將持續(xù)深遠。為了避免在“人工智能冬天”中被淘汰的命運,能做的最好的事情就是明確你要解決的問題,并理解其本質;然后,尋找為特定問題提供解決方案的直觀路徑的方法。

審核編輯 黃昊宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    462

    文章

    53252

    瀏覽量

    455455
  • 深度學習
    +關注

    關注

    73

    文章

    5587

    瀏覽量

    123764
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    什么是AI模組?

    未來,騰視科技將繼續(xù)深耕AI模組領域,全力推動AI邊緣計算行業(yè)的深度發(fā)展。隨著AI技術的不斷演進和物聯(lián)網應用的持續(xù)拓展,騰視科技的AI
    的頭像 發(fā)表于 09-19 15:26 ?987次閱讀
    什么是AI<b class='flag-5'>算</b><b class='flag-5'>力</b>模組?

    什么是AI模組?

    未來,騰視科技將繼續(xù)深耕AI模組領域,全力推動AI邊緣計算行業(yè)的深度發(fā)展。隨著AI技術的不斷演進和物聯(lián)網應用的持續(xù)拓展,騰視科技的AI
    的頭像 發(fā)表于 09-19 15:25 ?267次閱讀
    什么是AI<b class='flag-5'>算</b><b class='flag-5'>力</b>模組?

    自動駕駛中Transformer大模型會取代深度學習嗎?

    持續(xù)討論。特別是在自動駕駛領域,部分廠商開始嘗試將多模態(tài)大模型(MLLM)引入到感知、規(guī)劃與決策系統(tǒng),引發(fā)了“傳統(tǒng)深度學習是否已過時”的激烈爭論。然而,從技術原理、成本、安全需求與
    的頭像 發(fā)表于 08-13 09:15 ?3794次閱讀
    自動駕駛中Transformer大模型會取代<b class='flag-5'>深度</b><b class='flag-5'>學習</b>嗎?

    WAIC 2025:芯片企業(yè)競逐AI新賽道!技術革新突破物理極限

    電子發(fā)燒友網報道(文/李彎彎) 2025年世界人工智能大會(WAIC 2025)上,全球芯片企業(yè)以“革命”為核心,展開了一場關于技術突破與生態(tài)構建的深度交流。從云端超算到端側智能,
    的頭像 發(fā)表于 08-04 10:30 ?7876次閱讀
    WAIC 2025:<b class='flag-5'>芯片</b>企業(yè)競逐AI新賽道!技術革新突破<b class='flag-5'>算</b><b class='flag-5'>力</b>物理<b class='flag-5'>極限</b>

    擺脫依賴英偉達!OpenAI首次轉向使用谷歌芯片

    地使用非英偉達芯片,更顯示出其正在逐步擺脫對英偉達芯片深度依賴,在布局上邁出了重要戰(zhàn)略調整
    的頭像 發(fā)表于 07-02 00:59 ?7782次閱讀

    【「芯片 | 高性能 CPU/GPU/NPU 微架構分析」閱讀體驗】+NVlink技術從應用到原理

    前言 【「芯片 | 高性能 CPU/GPU/NPU 微架構分析」書中的芯片知識是比較接近當前的頂尖
    發(fā)表于 06-18 19:31

    摩爾線程與AI平臺AutoDL達成深度合作

    近日,摩爾線程與國內領先的AI平臺AutoDL宣布達成深度合作,雙方聯(lián)合推出面向個人開發(fā)者的“摩爾線程專區(qū)”,首次將國產GPU開放至
    的頭像 發(fā)表于 05-23 16:10 ?1236次閱讀

    芯片的生態(tài)突圍與革命

    電子發(fā)燒友網報道(文 / 李彎彎)大芯片,即具備強大計算能力的集成電路芯片,主要應用于高性能計算(HPC)、人工智能(AI)、數據中心、自動駕駛等需要海量數據并行計算的場景。隨著
    的頭像 發(fā)表于 04-13 00:02 ?2411次閱讀

    接棒,慧榮科技以主控技術突破AI存儲極限

    電子發(fā)燒友網報道(文/黃山明)在AI的高速增長下,尤其是以DeepSeek為代表的AI大模型推動存儲需求激增,增長倒逼存升級。而存儲是AI生態(tài)的基礎,存將成為未來增長核心已成為
    的頭像 發(fā)表于 03-19 01:29 ?2179次閱讀
    存<b class='flag-5'>力</b>接棒<b class='flag-5'>算</b><b class='flag-5'>力</b>,慧榮科技以主控技術突破AI存儲<b class='flag-5'>極限</b>

    信而泰CCL仿真:解鎖AI極限,智中心網絡性能躍升之道

    中心RoCE網絡提供精準評估方案,助力企業(yè)突破瓶頸,釋放AI澎湃動力! 什么是智中心 智中心(AIDC,Artificial Intelligence Data Center)
    的頭像 發(fā)表于 02-24 17:34 ?849次閱讀
    信而泰CCL仿真:解鎖AI<b class='flag-5'>算</b><b class='flag-5'>力</b><b class='flag-5'>極限</b>,智<b class='flag-5'>算</b>中心網絡性能躍升之道

    DeepSeek對芯片的影響

    DeepSeek模型,尤其是其基于MOE(混合專家)架構的DeepSeek-V3,對芯片的要求產生了深遠影響。為了更好地理解這一影響,我們可以從幾個方面進行分析。一.MOE架構對
    的頭像 發(fā)表于 02-07 10:02 ?1490次閱讀
    DeepSeek對<b class='flag-5'>芯片</b><b class='flag-5'>算</b><b class='flag-5'>力</b>的影響

    中心的如何衡量?

    作為當下科技發(fā)展的重要基礎設施,其的衡量關乎其能否高效支撐人工智能、大數據分析等智能應用的運行。以下是對智中心算衡量的詳細闡述:一、
    的頭像 發(fā)表于 01-16 14:03 ?3684次閱讀
    <b class='flag-5'>算</b>智<b class='flag-5'>算</b>中心的<b class='flag-5'>算</b><b class='flag-5'>力</b>如何衡量?

    科技云報到:要更要“利”,“精裝”觸發(fā)大模型產業(yè)新變局?

    科技云報到:要更要“利”,“精裝”觸發(fā)大模型產業(yè)新變局?
    的頭像 發(fā)表于 01-16 10:24 ?679次閱讀

    調度的基礎知識

    編者按 “調度”的概念,這幾年越來越多的提及。剛聽到這個概念的時候,我腦海里一直拐不過彎。作為底層芯片出身的我,一直認為:
    的頭像 發(fā)表于 11-27 17:13 ?1208次閱讀
    <b class='flag-5'>算</b><b class='flag-5'>力</b>調度的基礎知識