chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

谷歌發(fā)明用于神經(jīng)網(wǎng)絡(luò)任務(wù)的AI芯片

我快閉嘴 ? 來(lái)源:愛(ài)集微 ? 作者:嘉德IPR ? 2020-11-18 09:54 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

谷歌發(fā)明的用于神經(jīng)網(wǎng)絡(luò)任務(wù)的AI芯片,通過(guò)引入標(biāo)準(zhǔn)人工智能運(yùn)算管芯,使得AI芯片可以應(yīng)對(duì)多種復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu),從而降低了芯片設(shè)計(jì)時(shí)長(zhǎng)以及減少了設(shè)計(jì)的工作量。

自從谷歌公司的AlphaGo機(jī)器人戰(zhàn)勝人類圍棋之后,人工智能便一直活躍在人們的視野之中,與各種人工智能方法對(duì)應(yīng)的是AI芯片。而在18年的Next云計(jì)算大會(huì)上,谷歌披露了自家搶攻IoT終端運(yùn)算的戰(zhàn)略武器,其中最引人關(guān)注的就是Edge TPU芯片的發(fā)布。

據(jù)悉,谷歌不僅為在自己的數(shù)據(jù)中心開(kāi)發(fā)人工智能芯片,還打算在將其設(shè)計(jì)的Edge TPU用在其他公司生產(chǎn)的產(chǎn)品中。這種人工智能芯片在物聯(lián)網(wǎng)應(yīng)用以及智能終端設(shè)備中具有巨大的使用空間。

在AI芯片設(shè)計(jì)方面,隨著神經(jīng)網(wǎng)絡(luò)的使用在人工智能計(jì)算領(lǐng)域中迅速增長(zhǎng),專用集成電路ASIC)的專用計(jì)算機(jī)的使用已經(jīng)被用于處理神經(jīng)網(wǎng)絡(luò),雖然這些方法可以用于設(shè)計(jì)AI芯片,但是隨著神經(jīng)網(wǎng)絡(luò)的普及和針對(duì)其使用神經(jīng)網(wǎng)絡(luò)的任務(wù)范圍的增長(zhǎng),較長(zhǎng)的設(shè)計(jì)時(shí)間和不可忽略的非重復(fù)性工程成本將會(huì)加劇。

為此,谷歌在18年9月21日申請(qǐng)了一項(xiàng)名為“用于使用具有多個(gè)相同的管芯的單片封裝處理神經(jīng)網(wǎng)絡(luò)任務(wù)的設(shè)備和機(jī)制”的發(fā)明專利(申請(qǐng)?zhí)枺?01880033593.8),申請(qǐng)人為谷歌有限責(zé)任公司。

根據(jù)該專利目前公開(kāi)的資料,讓我們一起來(lái)看看谷歌的這項(xiàng)專利技術(shù)吧。

谷歌發(fā)明用于神經(jīng)網(wǎng)絡(luò)任務(wù)的AI芯片

如上圖,為該專利中發(fā)明的用于處理神經(jīng)網(wǎng)絡(luò)任務(wù)的系統(tǒng),該系統(tǒng)主要包括主處理單元101和人工智能處理單元102,這種系統(tǒng)可以應(yīng)用在服務(wù)器和物聯(lián)網(wǎng)(IoT)設(shè)備中。AIPU 102是主處理單元101的協(xié)處理器,主處理單元通過(guò)通信路徑104a和104b耦合到AIPU。

AIPU包括多個(gè)人工智能處理管芯(103a-103f),這些管芯的結(jié)構(gòu)都是相同的,可以用來(lái)處理神經(jīng)網(wǎng)絡(luò)相關(guān)的計(jì)算任務(wù),這個(gè)示意圖中展示了6個(gè)這種處理管芯,而其數(shù)目可以基于由主要計(jì)算設(shè)備處理的神經(jīng)網(wǎng)絡(luò)模型的層數(shù)而變化,也正是這種標(biāo)準(zhǔn)處理管芯的引入,使得定制ASIC的挑戰(zhàn)得以減輕。

也就是說(shuō),需要多少處理管芯是由要處理的任務(wù)所決定的,例如當(dāng)這種神經(jīng)網(wǎng)絡(luò)處理器應(yīng)用在智能恒溫器上時(shí),由于智能恒溫器的神經(jīng)網(wǎng)絡(luò)模型的層數(shù)可能小于數(shù)據(jù)中心的計(jì)算設(shè)備,因?yàn)樘幚淼娜蝿?wù)會(huì)更加簡(jiǎn)單,因此其需要的管芯數(shù)也會(huì)更少。這樣有利于節(jié)省硬件開(kāi)銷,避免不必要的算力浪費(fèi),下面我們來(lái)這個(gè)處于核心地位的管芯的內(nèi)部邏輯吧。

谷歌發(fā)明用于神經(jīng)網(wǎng)絡(luò)任務(wù)的AI芯片

如上圖,為人工智能處理單元的人工智能處理管芯的功能邏輯示意圖,其中主要包括主機(jī)接口單元、緩沖器、控制器、緩沖器、計(jì)算單元以及輸入輸出(I/O)模塊。可以看到在模塊的四個(gè)角均有輸入輸出模塊,因?yàn)檩斎胼敵瞿K的引腳被配置為雙向的,使得I/O模塊可以從源單元接收數(shù)據(jù)并向目的單元發(fā)送數(shù)據(jù)。

主機(jī)接口單元經(jīng)過(guò)I/O引腳從控制器中接收數(shù)據(jù),并經(jīng)過(guò)I/O引腳將數(shù)據(jù)發(fā)送到主處理單元控制器。緩沖器中存儲(chǔ)著數(shù)據(jù),控制器負(fù)責(zé)從緩沖器中存取數(shù)據(jù),這些數(shù)據(jù)包括各種指令數(shù)據(jù)以及神經(jīng)網(wǎng)絡(luò)的待處理數(shù)據(jù),具體應(yīng)用這種管芯的方法如下圖所示。

谷歌發(fā)明用于神經(jīng)網(wǎng)絡(luò)任務(wù)的AI芯片

在人工智能處理管芯的方法流程圖中可以看到,系統(tǒng)首先會(huì)接收輸入數(shù)據(jù)以配置AIPU,這些配置數(shù)據(jù)也會(huì)傳遞到AIPU中的每個(gè)AIPD上,不同的神經(jīng)網(wǎng)絡(luò)處理任務(wù)會(huì)發(fā)送不同的數(shù)據(jù),只有在管芯依據(jù)所要進(jìn)行的任務(wù)正確配置的前提下,才可以正確的完成任務(wù)。

例如,如果由AIPU處理的神經(jīng)網(wǎng)絡(luò)的第一層需要第一組權(quán)重值而同時(shí)第二層需要另外一組第二組權(quán)重值時(shí),則關(guān)聯(lián)于神經(jīng)網(wǎng)絡(luò)的第一層相關(guān)聯(lián)的配置參數(shù)將會(huì)于第二層進(jìn)行區(qū)分。這樣的設(shè)計(jì)方案也是由于神經(jīng)網(wǎng)絡(luò)每層的結(jié)構(gòu)都可以不相同,為了靈活的應(yīng)對(duì)層出不窮的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。

在當(dāng)AIPU接收到數(shù)據(jù)信號(hào)后,基于配置數(shù)據(jù)來(lái)配置每一個(gè)AIPD,最后將確認(rèn)信號(hào)發(fā)送到主處理器,以等待任務(wù)的開(kāi)始。

谷歌發(fā)明用于神經(jīng)網(wǎng)絡(luò)任務(wù)的AI芯片

最后,我們來(lái)看看這種基于神經(jīng)網(wǎng)絡(luò)模型來(lái)處理神經(jīng)網(wǎng)絡(luò)任務(wù)的流程圖,首先將于神經(jīng)網(wǎng)絡(luò)相關(guān)的初始數(shù)據(jù)發(fā)送到AIPU,AIPU配置好后會(huì)執(zhí)行相關(guān)層的計(jì)算任務(wù),同時(shí)將計(jì)算結(jié)果發(fā)送到第二AIPD,最后將計(jì)算的結(jié)果從AIPU發(fā)送到主處理器中,并將神經(jīng)網(wǎng)絡(luò)的處理結(jié)果發(fā)送到用戶。

以上就是谷歌發(fā)明的用于神經(jīng)網(wǎng)絡(luò)任務(wù)的設(shè)備及方法,通過(guò)引入標(biāo)準(zhǔn)人工智能運(yùn)算管芯,使得AI芯片可以從容的應(yīng)對(duì)不同復(fù)雜程度的神經(jīng)網(wǎng)絡(luò)以及數(shù)量變化不定的卷積核等參數(shù),這樣就可以跨多個(gè)產(chǎn)品使用標(biāo)準(zhǔn)管芯,從而使得芯片設(shè)計(jì)時(shí)長(zhǎng)和非重復(fù)性工作都可以得以更有效的分?jǐn)偂?/p>

關(guān)于嘉德

深圳市嘉德知識(shí)產(chǎn)權(quán)服務(wù)有限公司由曾在華為等世界500強(qiáng)企業(yè)工作多年的知識(shí)產(chǎn)權(quán)專家、律師、專利代理人組成,熟悉中歐美知識(shí)產(chǎn)權(quán)法律理論和實(shí)務(wù),在全球知識(shí)產(chǎn)權(quán)申請(qǐng)、布局、訴訟、許可談判、交易、運(yùn)營(yíng)、標(biāo)準(zhǔn)專利協(xié)同創(chuàng)造、專利池建設(shè)、展會(huì)知識(shí)產(chǎn)權(quán)、跨境電商知識(shí)產(chǎn)權(quán)、知識(shí)產(chǎn)權(quán)海關(guān)保護(hù)等方面擁有豐富的經(jīng)驗(yàn)。
責(zé)任編輯:tzh

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    463

    文章

    53867

    瀏覽量

    463241
  • 谷歌
    +關(guān)注

    關(guān)注

    27

    文章

    6250

    瀏覽量

    110739
  • AI
    AI
    +關(guān)注

    關(guān)注

    91

    文章

    39126

    瀏覽量

    299775
  • 人工智能
    +關(guān)注

    關(guān)注

    1814

    文章

    49967

    瀏覽量

    263719
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    神經(jīng)網(wǎng)絡(luò)的初步認(rèn)識(shí)

    日常生活中的智能應(yīng)用都離不開(kāi)深度學(xué)習(xí),而深度學(xué)習(xí)則依賴于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)。什么是神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)的核心思想是模仿生物神經(jīng)系統(tǒng)的結(jié)構(gòu),特別是大腦中神經(jīng)
    的頭像 發(fā)表于 12-17 15:05 ?206次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的初步認(rèn)識(shí)

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    :   神經(jīng)網(wǎng)絡(luò)卷積函數(shù)   神經(jīng)網(wǎng)絡(luò)激活函數(shù)   全連接層函數(shù)   神經(jīng)網(wǎng)絡(luò)池化函數(shù)   Softmax 函數(shù)   神經(jīng)網(wǎng)絡(luò)支持功能   該庫(kù)具有
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識(shí)別。一旦模型被訓(xùn)練并保存,就可以用于對(duì)新圖像進(jìn)行推理和預(yù)測(cè)。要使用生成的模型進(jìn)行推理,可以按照以下步驟進(jìn)行操作: 1.
    發(fā)表于 10-22 07:03

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡(jiǎn)介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計(jì)理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲(chóng)的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?962次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時(shí)間連續(xù)性與動(dòng)態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+神經(jīng)形態(tài)計(jì)算、類腦芯片

    AI芯片不僅包括深度學(xué)細(xì)AI加速器,還有另外一個(gè)主要列別:類腦芯片。類腦芯片是模擬人腦神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 09-17 16:43

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+AI的未來(lái):提升算力還是智力

    。 耦合振蕩計(jì)算與傳統(tǒng)的計(jì)算的區(qū)別: 3、神經(jīng)符號(hào)計(jì)算 神經(jīng)符號(hào)極端是指將基于神經(jīng)網(wǎng)絡(luò)的方法與基于符號(hào)知識(shí)的方法結(jié)合的AI計(jì)算。 神經(jīng)符號(hào)計(jì)
    發(fā)表于 09-14 14:04

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+第二章 實(shí)現(xiàn)深度學(xué)習(xí)AI芯片的創(chuàng)新方法與架構(gòu)

    連接定義了神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)。 不同神經(jīng)網(wǎng)絡(luò)的DNN: 一、基于大模型的AI芯片 1、Transformer 模型與引擎 1.1 Transformer 模型概述 Transforme
    發(fā)表于 09-12 17:30

    NVIDIA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強(qiáng)功能

    發(fā)者能使用 NVIDIA GeForce RTX GPU 中的 AI Tensor Cores,在游戲的圖形渲染管線內(nèi)加速神經(jīng)網(wǎng)絡(luò)渲染。
    的頭像 發(fā)表于 04-07 11:33 ?1011次閱讀

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過(guò)濾器修剪統(tǒng)計(jì)數(shù)據(jù)怎么查看?

    無(wú)法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過(guò)濾器修剪統(tǒng)計(jì)數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1548次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過(guò)訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類、回歸等任務(wù),無(wú)需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)通過(guò)訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?1892次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?1475次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1611次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個(gè)核心過(guò)程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:13 ?1749次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達(dá),適用于處理非線性問(wèn)題。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中應(yīng)用的分析: 一、BP
    的頭像 發(fā)表于 02-12 15:12 ?1323次閱讀