chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何使用TensorFlow Hub的ESRGAN模型來在安卓app中生成超分圖片

Tensorflowers ? 來源:TensorFlow ? 作者:魏巍 ? 2020-11-26 09:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

從一張低分辨率的圖片生成一張對應的高分辨率圖片的任務通常被稱為單圖超分(Single Image Super Resolution - SISR)。盡管可以使用傳統(tǒng)的插值方法(如雙線性插值和雙三次插值)來完成這個任務,但是產(chǎn)生的圖片質(zhì)量卻經(jīng)常差強人意。深度學習,尤其是對抗生成網(wǎng)絡 GAN,已經(jīng)被成功應用在超分任務上,比如 SRGAN 和 ESRGAN 都可以生成比較真實的超分圖片。那么在本文里,我們將介紹一下如何使用TensorFlow Hub上的一個預訓練的 ESRGAN 模型來在一個安卓 app 中生成超分圖片。最終的 app 效果如下圖,我們也已經(jīng)將完整代碼開源給大家參考。

SRGAN
https://arxiv.org/abs/1609.04802

ESRGAN
https://arxiv.org/abs/1809.00219

完整代碼
https://github.com/tensorflow/examples/tree/master/lite/examples/super_resolution

首先,我們可以很方便的從 TFHub 上加載 ESRGAN 模型,然后很容易的將其轉(zhuǎn)化為一個 TFLite 模型。注意在這里我們使用了動態(tài)范圍量化(dynamic range quantization),并將輸入圖片的尺寸固定在50x50像素(我們已經(jīng)將轉(zhuǎn)化后的模型上傳到 TFHub 上了):

model = hub.load("https://tfhub.dev/captain-pool/esrgan-tf2/1") concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY] concrete_func.inputs[0].set_shape([1, 50, 50, 3]) converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func]) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_model = converter.convert() # Save the TF Lite model. with tf.io.gfile.GFile('ESRGAN.tflite', 'wb') as f: f.write(tflite_model) esrgan_model_path = './ESRGAN.tflite'

TFHub
https://hub.tensorflow.google.cn/

TFHub(轉(zhuǎn)化后模型)
https://hub.tensorflow.google.cn/captain-pool/lite-model/esrgan-tf2/1

現(xiàn)在 TFLite 已經(jīng)支持動態(tài)大小的輸入,所以你也可以在模型轉(zhuǎn)化的時候不指定輸入圖片的大小,而在運行的時候動態(tài)指定。如果你想使用動態(tài)輸入大小,請參考這個例子。

例子
https://github.com/tensorflow/tensorflow/blob/c58c88b23122576fc99ecde988aab6041593809b/tensorflow/lite/python/lite_test.py#L529-L560

模型轉(zhuǎn)化完之后,我們可以很快驗證 ESRGAN 生成的超分圖片質(zhì)量確實比雙三次插值要好很多。如果你想更多的了解 ESRGAN 模型,我們還有另外一個教程可供參考:

lr = cv2.imread(test_img_path) lr = cv2.cvtColor(lr, cv2.COLOR_BGR2RGB) lr = tf.expand_dims(lr, axis=0) lr = tf.cast(lr, tf.float32) # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=esrgan_model_path) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Run the model interpreter.set_tensor(input_details[0]['index'], lr) interpreter.invoke() # Extract the output and postprocess it output_data = interpreter.get_tensor(output_details[0]['index']) sr = tf.squeeze(output_data, axis=0) sr = tf.clip_by_value(sr, 0, 255) sr = tf.round(sr) sr = tf.cast(sr, tf.uint8)

教程
https://tensorflow.google.cn/hub/tutorials/image_enhancing

LR: 輸入的低分辨率圖片,該圖從 DIV2K 數(shù)據(jù)集中的一張蝴蝶圖片中切割出來. ESRGAN (x4): ESRGAN 模型生成的超分圖片,單邊分辨率提升4倍. Bicubic: 雙三次插值生成圖片. 在這里大家可以很容易看出來,雙三次插值生成的圖片要比 ESRGAN 模型生成的超分圖片模糊很多

你可能已經(jīng)知道,TensorFlow Lite 是 TensorFlow 用于在端側(cè)運行的官方框架,目前全球已有超過40億臺設備在運行 TFLite,它可以運行在安卓,iOS,基于 LinuxIoT 設備以及微處理器上。你可以使用 Java, C/C++ 或其他編程語言來運行 TFLite。在這篇文章中,我們將使用 TFLite C API,因為有許多的開發(fā)者表示希望我們能提供這樣一個范例。

DIV2K
https://data.vision.ee.ethz.ch/cvl/DIV2K/

Java, C/C++
https://tensorflow.google.cn/lite/guide/android

TFLite C API
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/c/c_api.h

我們在預先編譯好的 AAR 文件中包含了 TFLite C API需要的頭文件和庫 (包括核心庫和 GPU 庫)。為了正確的設置好 Android 項目,我們首先需要下載兩個 JAR 文件并將相應的頭文件和庫抽取出來。我們可以在一個 download.gradle 文件中定義這些任務,然后將這些任務導入 build.gradle。下面我們先定義下載 TFLite JAR 文件的兩個任務:

task downloadTFLiteAARFile() { download { src "https://bintray.com/google/tensorflow/download_file?file_path=org%2Ftensorflow%2Ftensorflow-lite%2F2.3.0%2Ftensorflow-lite-2.3.0.aar" dest "${project.rootDir}/libraries/tensorflow-lite-2.3.0.aar" overwrite false retries 5 } } task downloadTFLiteGPUDelegateAARFile() { download { src "https://bintray.com/google/tensorflow/download_file?file_path=org%2Ftensorflow%2Ftensorflow-lite-gpu%2F2.3.0%2Ftensorflow-lite-gpu-2.3.0.aar" dest "${project.rootDir}/libraries/tensorflow-lite-gpu-2.3.0.aar" overwrite false retries 5 } }

AAR 文件
https://tensorflow.google.cn/lite/guide/android#use_tflite_c_api

然后我們定義另一個任務來講頭文件和庫解壓然后放到正確的位置:

task fetchTFLiteLibs() { copy { from zipTree("${project.rootDir}/libraries/tensorflow-lite-2.3.0.aar") into "${project.rootDir}/libraries/tensorflowlite/" include "headers/tensorflow/lite/c/*h" include "headers/tensorflow/lite/*h" include "jni/**/libtensorflowlite_jni.so" } copy { from zipTree("${project.rootDir}/libraries/tensorflow-lite-gpu-2.3.0.aar") into "${project.rootDir}/libraries/tensorflowlite-gpu/" include "headers/tensorflow/lite/delegates/gpu/*h" include "jni/**/libtensorflowlite_gpu_jni.so" }

因為我們是用安卓 NDK 來編譯這個 app,我們需要讓 Android Studio 知道如何處理對應的原生文件。我們在 CMakeList.txt 文件中這樣寫:

set(TFLITE_LIBPATH "${CMAKE_CURRENT_SOURCE_DIR}/../../../../libraries/tensorflowlite/jni") set(TFLITE_INCLUDE "${CMAKE_CURRENT_SOURCE_DIR}/../../../../libraries/tensorflowlite/headers") set(TFLITE_GPU_LIBPATH "${CMAKE_CURRENT_SOURCE_DIR}/../../../../libraries/tensorflowlite-gpu/jni") set(TFLITE_GPU_INCLUDE "${CMAKE_CURRENT_SOURCE_DIR}/../../../../libraries/tensorflowlite-gpu/headers") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=gnu++14") set(CMAKE_CXX_STANDARD 14) add_library(SuperResolution SHARED SuperResolution_jni.cpp SuperResolution.cpp) add_library(lib_tensorflowlite SHARED IMPORTED) set_target_properties(lib_tensorflowlite PROPERTIES IMPORTED_LOCATION ${TFLITE_LIBPATH}/${ANDROID_ABI}/libtensorflowlite_jni.so) add_library(lib_tensorflowlite_gpu SHARED IMPORTED) set_target_properties(lib_tensorflowlite_gpu PROPERTIES IMPORTED_LOCATION ${TFLITE_GPU_LIBPATH}/${ANDROID_ABI}/libtensorflowlite_gpu_jni.so) find_library(log-lib log) include_directories(${TFLITE_INCLUDE}) target_include_directories(SuperResolution PRIVATE ${TFLITE_INCLUDE}) include_directories(${TFLITE_GPU_INCLUDE}) target_include_directories(SuperResolution PRIVATE ${TFLITE_GPU_INCLUDE}) target_link_libraries(SuperResolution android lib_tensorflowlite lib_tensorflowlite_gpu ${log-lib})

我們在 app 里包含了3個示例圖片,這樣用戶可能會運行同一個模型多次,這意味著為了提高運行效率,我們需要將 TFLite 解釋執(zhí)行器進行緩存。這一點我們可以在解釋執(zhí)行器成功建立后通過將其指針從 C++ 傳回到 Java 來實現(xiàn):

extern "C" JNIEXPORT jlong JNICALL Java_org_tensorflow_lite_examples_superresolution_MainActivity_initWithByteBufferFromJNI(JNIEnv *env, jobject thiz, jobject model_buffer, jboolean use_gpu) { const void *model_data = static_cast(env->GetDirectBufferAddress(model_buffer)); jlong model_size_bytes = env->GetDirectBufferCapacity(model_buffer); SuperResolution *super_resolution = new SuperResolution(model_data, static_cast(model_size_bytes), use_gpu); if (super_resolution->IsInterpreterCreated()) { LOGI("Interpreter is created successfully"); return reinterpret_cast(super_resolution); } else { delete super_resolution; return 0; } }

解釋執(zhí)行器建立之后,運行模型實際上就非常簡單了,我們只需要按照 TFLite C API 來就好。不過我們需要注意的是如何從每個像素中抽取 RGB 值:

// Extract RGB values from each pixel float input_buffer[kNumberOfInputPixels * kImageChannels]; for (int i = 0, j = 0; i < kNumberOfInputPixels; i++) { // Alpha is ignored input_buffer[j++] = static_cast((lr_img_rgb[i] >> 16) & 0xff); input_buffer[j++] = static_cast((lr_img_rgb[i] >> 8) & 0xff); input_buffer[j++] = static_cast((lr_img_rgb[i]) & 0xff); }

TFLite C API
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/c/c_api.h

運行完模型后我們需要再將 RGB 值再打包進每個像素:

// Postprocess the output from TFLite int clipped_output[kImageChannels]; auto rgb_colors = std::make_unique(kNumberOfOutputPixels); for (int i = 0; i < kNumberOfOutputPixels; i++) { for (int j = 0; j < kImageChannels; j++) { clipped_output[j] = std::max(0, std::min(255, output_buffer[i * kImageChannels + j])); } // When we have RGB values, we pack them into a single pixel. // Alpha is set to 255. rgb_colors[i] = (255u & 0xff) << 24 | (clipped_output[0] & 0xff) << 16 | (clipped_output[1] & 0xff) << 8 | (clipped_output[2] & 0xff); }

那么到這里我們就完成了這個 app 的關(guān)鍵步驟,我們可以用這個 app 來生成超分圖片。您可以在對應的代碼庫中看到更多信息。我們希望這個范例能作為一個好的參考來幫助剛剛起步的開發(fā)者更快的掌握如何使用 TFLite C/C++ API 來搭建自己的機器學習 app。

對應的代碼庫中
https://github.com/tensorflow/examples/tree/master/lite/examples/super_resolution

致謝

作者十分感謝 @captain__pool 將他實現(xiàn)的 ESRGAN 模型上傳到 TFHub, 以及 TFLite 團隊的 Tian Lin 和 Jared Duke 提供十分有幫助的反饋。

— 參考 —

[1] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi. 2016. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

[2] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy, Yu Qiao, Xiaoou Tang. 2018. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.

[3] Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

https://github.com/krasserm/super-resolution

[4] @captain__pool 的 ESGRAN 代碼實現(xiàn)

https://github.com/captain-pool/GSOC

[5] Eirikur Agustsson, Radu Timofte. 2017. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study.

責任編輯:xj

原文標題:學習教程 | 使用 TensorFlow Lite 在 Android App 中生成超分圖片

文章出處:【微信公眾號:TensorFlow】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • Android
    +關(guān)注

    關(guān)注

    12

    文章

    3983

    瀏覽量

    132964
  • APP
    APP
    +關(guān)注

    關(guān)注

    33

    文章

    1589

    瀏覽量

    75616
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    331

    瀏覽量

    61828

原文標題:學習教程 | 使用 TensorFlow Lite 在 Android App 中生成超分圖片

文章出處:【微信號:tensorflowers,微信公眾號:Tensorflowers】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    利用微型 Neuton ML 模型解鎖 SoC 邊緣人工智能

    才能做好。 現(xiàn)在,這些阻礙即將被解決。 Neuton 是一個自動生成 ML 模型的框架,其大小僅為 TensorFlow Lite 等傳統(tǒng)框架的一小部。對于開發(fā)人員來說,這意味著要訓
    發(fā)表于 08-31 20:54

    Copilot操作指南(一):使用圖片生成原理圖符號、PCB封裝

    “ ?上周推出支持圖片生成模型的華秋發(fā)行版之后,得到了很多小伙伴的肯定。但看到更多的回復是:為什么我的 Copilot 無法生成符號?只有普通的文本回復?今天就為大家詳細講解下
    的頭像 發(fā)表于 07-15 11:14 ?3832次閱讀
    Copilot操作指南(一):使用<b class='flag-5'>圖片</b><b class='flag-5'>生成</b>原理圖符號、PCB封裝

    無法將Tensorflow Lite模型轉(zhuǎn)換為OpenVINO?格式怎么處理?

    Tensorflow Lite 模型轉(zhuǎn)換為 OpenVINO? 格式。 遇到的錯誤: FrontEnd API failed with OpConversionFailure:No translator found for TFLite_Detection_PostP
    發(fā)表于 06-25 08:27

    手機APP遠程控制,智能家居監(jiān)測、智能控制系統(tǒng)(STM32L4、服務器、源碼)實例項目打包下載

    手機APP遠程控制,智能家居監(jiān)測、智能控制系統(tǒng)(STM32L4、服務器、源碼)實例項目打包,推薦下載!
    發(fā)表于 05-29 21:47

    手機APP遠程控制,智能家居監(jiān)測、智能控制系統(tǒng)(STM32L4、服務器、源碼)

    手機APP遠程控制,智能家居監(jiān)測、智能控制系統(tǒng)(STM32L4、服務器、源碼) 項目實例下載! 純分享帖,需要者可點擊附件免費獲取完整資料~~~【免責聲明】本文系網(wǎng)絡轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、
    發(fā)表于 05-23 21:00

    有人接rk3576的視頻硬件解碼的實現(xiàn)么?

    我們這邊是有做好了一個app的,然后我們這邊是有用軟解的方式播放了網(wǎng)絡攝像槍的實時視頻的,但是因為占用CPU太高了,所以就想轉(zhuǎn)成視頻硬解的方式播放實時視頻。 目前我們是有采購了一個電視機頂盒硬件
    發(fā)表于 05-19 09:52

    迅為RK3588開發(fā)板GPIO調(diào)用APP運行測試

    Android Studio 的 locat 日志打印窗口,篩選打印“package:mine”,然后點擊 APP 界面的“調(diào)用 GPIO”按鈕,會循環(huán)打印 GPIO 引腳打開和 GPIO 引腳關(guān)閉,如下圖所示: 到此,
    發(fā)表于 05-13 10:49

    使用gpif designer fx2lpCTL0中生成波形連接FPGA 以便從FPGA獲取數(shù)據(jù),為什么不能正常工作?

    我想使用gpif designer fx2lp CTL0 中生成波形連接FPGA 以便從FPGA 獲取數(shù)據(jù)。 它在 CTL0 的下降沿逐幀獲取數(shù)據(jù)。 每幀有 32 個脈沖,但是當我這樣配置時,它不能正常工作。 我不明白。 我
    發(fā)表于 05-06 13:01

    將YOLOv4模型轉(zhuǎn)換為IR的說明,無法將模型轉(zhuǎn)換為TensorFlow2格式怎么解決?

    遵照 將 YOLOv4 模型轉(zhuǎn)換為 IR 的 說明,但無法將模型轉(zhuǎn)換為 TensorFlow2* 格式。 將 YOLOv4 darknet 轉(zhuǎn)換為 Keras 模型時,收到 Type
    發(fā)表于 03-07 07:14

    無法GPU上運行ONNX模型的Benchmark_app怎么解決?

    CPU 和 GPU 上運行OpenVINO? 2023.0 Benchmark_app推斷的 ONNX 模型。 CPU 上推理成功,但在 GPU 上失敗。
    發(fā)表于 03-06 08:02

    可以使用OpenVINO?工具包將中間表示 (IR) 模型轉(zhuǎn)換為TensorFlow格式嗎?

    無法將中間表示 (IR) 模型轉(zhuǎn)換為 TensorFlow* 格式
    發(fā)表于 03-06 06:51

    使用各種TensorFlow模型運行模型優(yōu)化器時遇到錯誤非法指令怎么解決?

    使用各種 TensorFlow 模型運行模型優(yōu)化器時遇到 [i]錯誤非法指令
    發(fā)表于 03-05 09:56

    為什么無法使用OpenVINO?模型優(yōu)化器轉(zhuǎn)換TensorFlow 2.4模型?

    已下載 ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8 型號。 使用將模型轉(zhuǎn)換為中間表示 (IR) ssd_support_api_v.2.4.json
    發(fā)表于 03-05 09:07

    自制 AirTag,支持/鴻蒙/PC/Home Assistant,無需擁有 iPhone

    ,模擬發(fā)出 FindMy 藍牙廣播。 這樣制作出的定位標簽,不需要蘋果手機綁定,支持/鴻蒙/PC/Home Assistant 查看標簽的位置。 制作教程 我 gitee 上建了一個項目
    發(fā)表于 02-25 11:22

    聲智APP暢享多元模型體驗

    重點并生成思維導圖。 ——這不是科幻電影,而是聲智APP用戶正在經(jīng)歷的真實日常 ,它就像一個時刻待命的 “AI 腦”,為用戶的生活、工作和學習排憂解難,讓每一個復雜任務都變得輕松簡單。 聲智
    的頭像 發(fā)表于 02-22 14:09 ?964次閱讀