chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

愛奇藝技術(shù)總監(jiān):奇觀識(shí)別方案從云遷移到端的探索和實(shí)踐

電子設(shè)計(jì) ? 來源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2020-12-08 23:33 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近年來,各類短視頻、視頻應(yīng)用如雨后春筍般涌現(xiàn), “AI+ 視頻"的模式也是近期的熱點(diǎn)方向。

奇觀是愛奇藝原創(chuàng)推出的 AI 創(chuàng)新應(yīng)用產(chǎn)品,它融合了多模態(tài)人物識(shí)別、卡通角色識(shí)別、臺(tái)詞實(shí)體抽取、BGM 識(shí)別等 AI 技術(shù),支持用戶在觀影過程中識(shí)別視頻中的明星人物、卡通角色、背景音樂和臺(tái)詞梗等視頻內(nèi)信息。

為了進(jìn)一步了解愛奇藝在“AI+ 視頻”方向上的探索,在 QCon 上海站前夕,InfoQ 有幸采訪了愛奇藝技術(shù)總監(jiān)朱俊敏,聽他分享愛奇藝奇觀如何融合了多模態(tài)人物識(shí)別、卡通角色識(shí)別、BGM 識(shí)別、臺(tái)詞實(shí)體抽取等多種 AI 技術(shù)來挖掘視頻的周邊內(nèi)容。

愛奇藝在“AI+ 視頻”上的探索

作為視頻平臺(tái),愛奇藝一直致力于人工智能與視頻、娛樂產(chǎn)業(yè)的結(jié)合,并陸續(xù)推出了針對(duì)內(nèi)容創(chuàng)作、用戶推薦等方面的智能產(chǎn)品。奇觀 是愛奇藝原創(chuàng)推出的 AI 創(chuàng)新應(yīng)用產(chǎn)品,截至今年 7 月,奇觀功能累計(jì)使用量已超 20 億次。

據(jù)愛奇藝技術(shù)總監(jiān)朱俊敏介紹,作為一款融合了多模態(tài)人物識(shí)別、卡通角色識(shí)別、臺(tái)詞實(shí)體抽取、BGM 識(shí)別等 AI 技術(shù)的產(chǎn)品,奇觀的萌芽需求來源于用戶。當(dāng)時(shí)愛奇藝在分析用戶的彈幕時(shí)發(fā)現(xiàn),有一定比例的用戶都在詢問“當(dāng)前的演員是誰?”, “背景音樂是啥?” 等跟視頻強(qiáng)相關(guān)的問題。原來用戶獲取該類問題的答案路徑是通過愛奇藝搜索或者百度搜索,但是效果并不是很好,造成這一結(jié)果的原因主要有兩方面:一方面是因?yàn)橛脩粜枰蚱圃瓉沓两降挠^影體驗(yàn);另一方面在于搜索無法做到海量?jī)?nèi)容實(shí)時(shí)索引,內(nèi)容熱播的時(shí)候一般是無法搜索到用戶想要的結(jié)果的。

為了解決上述問題,愛奇藝于 2019 年首先在 TV 端進(jìn)行了一些嘗試。用戶在觀影時(shí)(當(dāng)時(shí)的名字叫 AI 雷達(dá)),可以通過遙控上鍵識(shí)別視頻中的明星,奇觀產(chǎn)品推出后得到用戶的一致好評(píng),功能滲透率超出團(tuán)隊(duì)的預(yù)期。

后來,研發(fā)團(tuán)隊(duì)又將該功能擴(kuò)展到移動(dòng)端,通過雙指雙擊的簡(jiǎn)單手勢(shì)觸達(dá)更多的用戶群體,滿足用戶了解內(nèi)容背后知識(shí)的需求。識(shí)別能力也逐漸從原來的明星識(shí)別, 擴(kuò)展到背景音樂識(shí)別,臺(tái)詞實(shí)體知識(shí),卡通角色識(shí)別等。

對(duì)紛繁復(fù)雜的明星、背景音樂、卡通角色等元素的精準(zhǔn)識(shí)別并不是件容易事。就拿多模態(tài)人物識(shí)別來說,愛奇藝針對(duì)視頻中人物身份識(shí)別的難點(diǎn)進(jìn)行了全方位的優(yōu)化改進(jìn),利用人臉質(zhì)量模型顯著減低了誤檢、差臉的干擾,綜合利用人臉、人頭、人體、聲紋等多維度特征信息,通過局部加全局聚類的方式,對(duì)視頻中的人物進(jìn)行識(shí)別,大幅度提高了識(shí)別精度和召回。同時(shí),團(tuán)隊(duì)還提供人臉的多維度屬性標(biāo)簽,如年齡、男女、顏值等,并將屬性標(biāo)簽和人臉識(shí)別模型進(jìn)行整合,在保證精度的情況下,顯著降低資源開銷、提高資源利用效率。目前線上模型包含 10+ 個(gè)屬性,相較于工業(yè)界的其他模型更加全面。愛奇藝人臉識(shí)別與屬性模型十五合一,一個(gè)模型可以同時(shí)識(shí)別身份屬性,且各項(xiàng)屬性的識(shí)別精度也比較高。目前線上奇觀服務(wù)的明星識(shí)別準(zhǔn)確率達(dá) 99.5%。

多模態(tài)人物識(shí)別技術(shù)的技術(shù)實(shí)現(xiàn)框圖如下:

朱俊敏坦言,為了達(dá)到 99.5% 的明星識(shí)別準(zhǔn)確率,算法團(tuán)隊(duì)付出了諸多努力。首先,他們分別訓(xùn)練了人臉、人頭、人體和聲紋特征的提取模型。再在人臉的幀級(jí)特征上增加了一個(gè) NetVLAD 模塊,將幀級(jí)特征轉(zhuǎn)換成視頻維度的特征,這樣可以充分利用幀級(jí)人臉信息,提高特征的表達(dá)能力。在特征融合層,為了充分利用多模態(tài)特征,并且降低了噪聲的干擾,團(tuán)隊(duì)還創(chuàng)新性地提出了 Multi-model Attention 模塊來自適應(yīng)地對(duì)各個(gè)模態(tài)分配不同的權(quán)重,并基于這些權(quán)重來進(jìn)行多模態(tài)特征的融合,顯著提高了算法的魯棒性,大幅度提高了視頻人物識(shí)別的精度。

下面的表格是研發(fā)團(tuán)隊(duì)從人臉特征開始逐漸增加多模態(tài)特征信息、NetVLAD 和 MMA 模塊的精度收益情況,從表中可以得出,隨著多模態(tài)信息的增加,愛奇藝的人臉識(shí)別精度穩(wěn)定提升,這充分驗(yàn)證了愛奇藝多模態(tài)人物識(shí)別方法的有效性。

這樣一項(xiàng)識(shí)別準(zhǔn)確度高、廣受好評(píng)的產(chǎn)品,其實(shí)它的研發(fā)周期并沒有十分漫長(zhǎng)。朱俊敏表示,多年來,愛奇藝在 NLP、聲音和視覺的 AI 能力方面有深厚的積累,得益于愛奇藝長(zhǎng)期對(duì)算法團(tuán)隊(duì)的投入,當(dāng)決定做奇觀產(chǎn)品時(shí),大部分的算法和基礎(chǔ)設(shè)施已經(jīng)比較成熟。團(tuán)隊(duì)只需從用戶需求出發(fā),根據(jù)實(shí)際場(chǎng)景對(duì)算法和方案進(jìn)行策略調(diào)整,快速實(shí)現(xiàn)產(chǎn)品化。朱俊敏稱:

如果將奇觀比喻為一棟房子,多模態(tài)人物識(shí)別、卡通角色識(shí)別、BGM 識(shí)別等 AI 技術(shù)就是地基。正是因?yàn)閷?duì) AI 長(zhǎng)期的投入,有堅(jiān)實(shí)的地基以支撐愛奇藝蓋出更漂亮的房子。

識(shí)別方案如何從云遷移到端

從奇觀萌生開始,研發(fā)團(tuán)隊(duì)就決定采用純?cè)贫说淖R(shí)別方案,之所以會(huì)做出這樣的決定,朱俊敏介紹,主要是考慮到算法的復(fù)雜度,在客戶端既要播放視頻(需要處理解碼和上屏),又要處理 AI 算法,芯片性能可能跟不上,而且手機(jī)的散熱和電池問題也會(huì)比較突出,所以奇觀一開始定方案的時(shí)候是采用純?cè)贫说淖R(shí)別方案。

后來,隨著算法的優(yōu)化和解耦,以人物識(shí)別為例,實(shí)現(xiàn)檢測(cè)和識(shí)別的解耦,而且人臉檢測(cè)的算法做到足夠輕量級(jí),實(shí)現(xiàn) CPU 可流暢推理。團(tuán)隊(duì)開始尋求實(shí)現(xiàn)云 + 端的模式, 把算法解耦,檢測(cè)部署在端上,識(shí)別部署在云端。這樣做的好處是:一方面,在端上做檢測(cè),可以過濾很多無人物的情況,減少網(wǎng)絡(luò)傳輸和云端識(shí)別的計(jì)算資源浪費(fèi);另一方面,端上做檢測(cè),在用戶交互體驗(yàn)可以更優(yōu),實(shí)現(xiàn)人物區(qū)域可跟蹤。

端上的識(shí)別方案不是云端方案的簡(jiǎn)單復(fù)刻,朱俊敏提到,在實(shí)現(xiàn)“云 + 端”的過程中,其難點(diǎn)主要在于兩方面:一方面是芯片的適配,原來云端 GPU 的算法,考慮到客戶端上 GPU 的參差不齊,需要把算法改造成 CPU 推理模式。另一方面,算法模型遷移到客戶端,需要考慮到客戶端本身的限制,不能顯著增加整體 app 安裝包的大小。所以為了適配客戶端,算法本身需要做 CPU 遷移,并通過蒸餾壓縮模型大小,同時(shí)還需要客戶端的工程師配合集成相應(yīng)的算法 runtime,同時(shí)建立模型動(dòng)態(tài)加載的機(jī)制,盡可能地減少客戶端的包的大小。

“云 + 端”模式將更快普及和應(yīng)用

隨著 5G 的逐步發(fā)展,朱俊敏認(rèn)為,“云 + 端”這種模式會(huì)得到更快的普及和應(yīng)用。5G 將作為一種全新的網(wǎng)絡(luò)架構(gòu),提供 10Gbps 以上的峰值速率、更佳的移動(dòng)性能、毫秒級(jí)時(shí)延和超高密度連接。而且客戶端的性能越來越強(qiáng),前面提到的云 + 端難點(diǎn)將不再是問題。這樣可以給算法部署和應(yīng)用更多的靈活性,業(yè)務(wù)可以根據(jù)自己場(chǎng)景和用戶體驗(yàn)來決定是否將更多的算法部署到客戶端。

而且 5G 網(wǎng)絡(luò)的特性,決定其更加去中心化,需要在網(wǎng)絡(luò)邊緣部署小規(guī)?;蛘弑銛y式數(shù)據(jù)中心,進(jìn)行終端請(qǐng)求的本地化處理,也就是人們所說的邊緣計(jì)算,將來的服務(wù)可能會(huì)進(jìn)一步從“云 + 端”過度到“云 + 邊 + 端”的模式上。

除了在“云 + 端”模式上繼續(xù)發(fā)力外,奇觀下一步的重點(diǎn)會(huì)繼續(xù)擴(kuò)展識(shí)別的品類。比如:動(dòng)植物的百科實(shí)體類識(shí)別;電子產(chǎn)品和汽車等標(biāo)準(zhǔn)品的識(shí)別;以及各類穿著垂類商品的識(shí)別。另一方面會(huì)繼續(xù)優(yōu)化現(xiàn)有的識(shí)別體驗(yàn),提高整體有結(jié)果率,目標(biāo)是實(shí)現(xiàn)應(yīng)有盡有的識(shí)別。

因?yàn)樯硖幵趦?nèi)容行業(yè),朱俊敏還表示,他會(huì)繼續(xù)關(guān)注 AI 在聲音和視覺上的算法創(chuàng)新,探索交互方面的新場(chǎng)景,未來,希望看到 AI 在內(nèi)容創(chuàng)意和創(chuàng)作方面也能發(fā)揮上賦能提效的作用。

嘉賓介紹:

朱俊敏,愛奇藝技術(shù)總監(jiān)。上海交通大學(xué)碩士,擁有 3 篇美國專利, 8 篇中國專利。2015 年加入愛奇藝,負(fù)責(zé) AI 產(chǎn)品落地和創(chuàng)新應(yīng)用開發(fā),先后孵化了 HomeAI(智能語音交互平臺(tái)), 奇觀(智能識(shí)別平臺(tái)),逗芽(表情生產(chǎn)和分發(fā)平臺(tái)) 等創(chuàng)新應(yīng)用。

本文轉(zhuǎn)自 公眾號(hào):AI前線 ,作者李冬梅,點(diǎn)擊閱讀原文

審核編輯:符乾江
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49743

    瀏覽量

    261586
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5591

    瀏覽量

    123912
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    天翼基于開源歐拉的智能調(diào)優(yōu)實(shí)踐

    在數(shù)字經(jīng)濟(jì)加速滲透的當(dāng)下,操作系統(tǒng)作為底層基礎(chǔ)設(shè)施的核心,其穩(wěn)定性與適配性直接關(guān)系到行業(yè)數(shù)字化進(jìn)程。隨著CentOS停止維護(hù),國內(nèi)企業(yè)面臨操作系統(tǒng)遷移的緊迫需求,天翼基于開源歐拉研發(fā)的CTyunOS,不僅成為這一遷移浪潮中的關(guān)
    的頭像 發(fā)表于 10-17 11:04 ?473次閱讀

    軟通動(dòng)力攜手華為推出iPaaS海外集成遷移聯(lián)合解決方案

    華為全聯(lián)接大會(huì)2025中,軟通動(dòng)力攜手華為正式發(fā)布基于華為ROMA Connect平臺(tái)的“iPaaS海外集成遷移聯(lián)合解決方案”。該方案
    的頭像 發(fā)表于 09-28 17:44 ?1007次閱讀

    Jtti分享混合與多云環(huán)境中的網(wǎng)絡(luò)互聯(lián)與數(shù)據(jù)遷移

    混合與多云架構(gòu)已成為企業(yè)數(shù)字化轉(zhuǎn)型的核心策略,但實(shí)現(xiàn)高效的網(wǎng)絡(luò)互聯(lián)與數(shù)據(jù)遷移面臨諸多挑戰(zhàn)。本文將深入探討技術(shù)方案實(shí)踐案例及未來趨勢(shì)。 網(wǎng)
    的頭像 發(fā)表于 09-16 17:43 ?526次閱讀

    如何在Keil中將NuMicro BSPArm編譯器5遷移到編譯器6?

    在Keil中將NuMicro BSPArm編譯器5遷移到編譯器6!
    發(fā)表于 08-20 06:29

    +多模態(tài)”新范式:《移遠(yuǎn)通信AI大模型技術(shù)方案白皮書》正式發(fā)布

    大模型技術(shù)方案的核心優(yōu)勢(shì)、落地路徑及標(biāo)桿案例,為行業(yè)智能化升級(jí)提供了可借鑒的實(shí)踐框架。洞察技術(shù)演進(jìn):AI大模型邁入“
    的頭像 發(fā)表于 07-28 13:08 ?939次閱讀
    “<b class='flag-5'>端</b><b class='flag-5'>云</b>+多模態(tài)”新范式:《移遠(yuǎn)通信AI大模型<b class='flag-5'>技術(shù)</b><b class='flag-5'>方案</b>白皮書》正式發(fā)布

    中軟國際上遷移服務(wù)充分釋放計(jì)算價(jià)值

    華為生態(tài)的核心合作伙伴,中軟國際憑借深厚的行業(yè)積累、成熟的遷移方法論及專業(yè)化工具鏈,為企業(yè)提供到端上服務(wù),助力客戶實(shí)現(xiàn)業(yè)務(wù)無縫遷移,充
    的頭像 發(fā)表于 07-25 14:32 ?736次閱讀
    中軟國際上<b class='flag-5'>云</b><b class='flag-5'>遷移</b>服務(wù)充分釋放<b class='flag-5'>云</b>計(jì)算價(jià)值

    Altium到KiCad的遷移實(shí)踐:多源庫管理方案與Jobset應(yīng)用技巧

    “ ?如果 NCX 可以用 KiCad 設(shè)計(jì) PCB,你的公司一定也可以!-- Jason Goldstein。 本演講記錄了一位資深電路板設(shè)計(jì)工程師從 Altium Designer 遷移到
    的頭像 發(fā)表于 06-11 11:21 ?1835次閱讀
    <b class='flag-5'>從</b>Altium到KiCad的<b class='flag-5'>遷移</b><b class='flag-5'>實(shí)踐</b>:多源庫管理<b class='flag-5'>方案</b>與Jobset應(yīng)用技巧

    HarmonyOS5服務(wù)技術(shù)分享--應(yīng)用預(yù)加載提速指南

    (用于真機(jī)調(diào)試) 三、云端配置全攻略 ? 方案A:一體化開發(fā)(推薦) ??創(chuàng)建工程?? 在DevEco Studio新建CloudProgram/cloudfunctions目錄
    發(fā)表于 05-22 20:39

    Keil MDK到IAR EWARM:通過工程遷移實(shí)現(xiàn)項(xiàng)目資產(chǎn)的更好管理

    對(duì)于需要統(tǒng)一開發(fā)環(huán)境或涉及多核架構(gòu)(如Cortex-A/R)的項(xiàng)目,越來越多的用戶選擇Keil MDK遷移到IAR EWARM。這就會(huì)面臨著需要將之前的Keil MDK工程遷移到IAR EWARM的問題。本文將介紹如何高效完成
    的頭像 發(fā)表于 05-08 09:03 ?1002次閱讀
    <b class='flag-5'>從</b>Keil MDK到IAR EWARM:通過工程<b class='flag-5'>遷移</b>實(shí)現(xiàn)項(xiàng)目資產(chǎn)的更好管理

    Arm助力開發(fā)者加速遷移至Arm架構(gòu)平臺(tái) Arm遷移資源分享

    隨著基于 Arm 架構(gòu)的實(shí)例日益擴(kuò)展,越來越多的用戶正從傳統(tǒng)平臺(tái)遷移至 Arm 平臺(tái)上。
    的頭像 發(fā)表于 04-09 18:23 ?1025次閱讀

    請(qǐng)問將項(xiàng)目RT1024遷移到RT1064的最快方法是什么?

    我正在將我的項(xiàng)目基于 RT1024 遷移到基于 RT1064 的下一代產(chǎn)品,是否有快速的方法,或者我只能手動(dòng)完成? 謝謝!
    發(fā)表于 03-31 06:15

    華為發(fā)布網(wǎng)一體化網(wǎng)絡(luò)安全解決方案

    3月20日至21日,以“因聚而生 眾智有為”為主題的華為中國合作伙伴大會(huì)2025在深圳舉行。期間,華為數(shù)據(jù)通信產(chǎn)品線安全分銷領(lǐng)域總監(jiān)峰在“華為坤靈直播間”面向中小企業(yè)發(fā)布網(wǎng)一體
    的頭像 發(fā)表于 03-21 17:28 ?1663次閱讀

    EMC電機(jī)控制器測(cè)試整改:問題識(shí)別到優(yōu)化實(shí)踐

    深圳南柯電子|EMC電機(jī)控制器測(cè)試整改:問題識(shí)別到優(yōu)化實(shí)踐
    的頭像 發(fā)表于 03-20 09:34 ?755次閱讀
    EMC電機(jī)控制器測(cè)試整改:<b class='flag-5'>從</b>問題<b class='flag-5'>識(shí)別</b>到優(yōu)化<b class='flag-5'>實(shí)踐</b>

    如何將項(xiàng)目IAR遷移到Embedded Studio

    本文描述如何將IAR EWARM項(xiàng)目遷移到SEGGER Embedded Studio(簡(jiǎn)稱SES)中。
    的頭像 發(fā)表于 02-25 17:11 ?1069次閱讀
    如何將項(xiàng)目<b class='flag-5'>從</b>IAR<b class='flag-5'>遷移到</b>Embedded Studio

    龍智直播預(yù)告:揭示現(xiàn)代化數(shù)據(jù)管理與版本控制優(yōu)勢(shì)、SVN遷移到Helix Core的實(shí)踐指導(dǎo)、遷移步驟等

    2025年1月9日(周四)14:00-14:45,Perforce中國授權(quán)合作伙伴-龍智將在線直播,分享為何您的傳統(tǒng)數(shù)據(jù)管理與版本控制系統(tǒng)需要升級(jí)、Perforce Helix Core的顯著優(yōu)勢(shì),以及如何遷移到Helix Core等實(shí)用見解,以為您的數(shù)據(jù)管理與版本控制系統(tǒng)現(xiàn)代化轉(zhuǎn)型提供有力支持。
    的頭像 發(fā)表于 12-16 15:35 ?627次閱讀
    龍智直播預(yù)告:揭示現(xiàn)代化數(shù)據(jù)管理與版本控制優(yōu)勢(shì)、<b class='flag-5'>從</b>SVN<b class='flag-5'>遷移到</b>Helix Core的<b class='flag-5'>實(shí)踐</b>指導(dǎo)、<b class='flag-5'>遷移</b>步驟等