chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

相控陣天線方向圖:柵瓣和波束斜視

電子設(shè)計 ? 來源:電子設(shè)計 ? 作者:電子設(shè)計 ? 2020-12-24 18:48 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

簡介

關(guān)于相控陣天線方向圖,我們將分三部分介紹,這是第二篇文章。 在第一部分中,我們介紹了相控陣轉(zhuǎn)向概念,并查看了影響陣列增益的因素。在第二部分,我們將討論柵瓣和波束斜視。柵瓣很難可視化,所以我們利用它們與數(shù)字轉(zhuǎn)換器信號混疊的相似性,將柵瓣想象為空間混疊。接下來,我們探討波束斜視的問題。波束斜視是我們使用相移,而不是使用真實時間延遲來使波束轉(zhuǎn)向時,天線在頻段范圍內(nèi)無聚焦的現(xiàn)象。我們還將討論這兩種轉(zhuǎn)向方法之間的權(quán)衡取舍,并了解波束斜視對典型系統(tǒng)的影響。

柵瓣簡介

到目前為止,我們只見過元件間隔為d = λ/2這種情況。圖1開始說明為什么λ/2的元件間隔在相控陣中如此常見。圖中共顯示兩種情況。首先,是藍(lán)色線條,重復(fù)顯示第1部分圖11中的30°圖。接下來,d/λ間隔增加到0.7,以顯示天線方向如何變化。注意,隨著間隔增加,波束寬度減小,這是一個積極現(xiàn)象。零值間隔減小使它們的距離更接近,這也可以接受。但是現(xiàn)在出現(xiàn)了第二個角度,在本例中為–70°,在該角度下出現(xiàn)了全陣列增益。這是最為不利的情況。這種天線增益復(fù)制被定義為一個柵瓣,可以被認(rèn)為是空間混疊。

圖4.θ = 50°、N = 32、d = 17 mm且Φ = 10 GHz時,柵瓣開始在水平方向出現(xiàn)。

通過限制最大掃描角度,可以自由地擴展元件間隔,增加每個通道的物理尺寸,以及擴展給定數(shù)量的元件的孔徑。例如,可以利用這個現(xiàn)象,為天線分配相當(dāng)狹窄的預(yù)定義方向。元件增益可以增大,以在預(yù)先定義的方向上提供方向性,元件間隔也可以增大,以實現(xiàn)更大孔徑。這兩種方法都能在較窄的波束角度下獲得較大的整體天線增益。

注意,方程3表示最大間隔為一個波長,即使在零轉(zhuǎn)向角度下也是如此。在一些情況下,如果柵瓣不出現(xiàn)在可見半圓內(nèi)即可。以地球同步衛(wèi)星為例,會以機械軸線校準(zhǔn)為中心,按9°的轉(zhuǎn)向角度覆蓋整個地球。在這種情況下,只要柵瓣不落在地球表面就可以。因此,元件間隔可以達(dá)到幾個波長,使得波束寬度更窄。

還有一些值得注意的天線結(jié)構(gòu),試圖通過形成不一致的元件間隔來克服柵瓣問題。這些被歸類為非周期陣列,以螺旋陣列為例。由于機械天線構(gòu)造的原因,我們可能希望有一個通用的可以擴展為更大陣列的構(gòu)建模塊,但是,這會形成一致的陣列,會受所述的柵瓣條件影響。

波束斜視

在第1部分中,我們開頭描述了在波峰接近元件陣列時,如何基于相對于軸線校準(zhǔn)的波峰角度θ在元件之間出現(xiàn)時間延遲。對于單一頻率,可以用相移代替時間延遲來實現(xiàn)波束轉(zhuǎn)向。這種方法適用于窄帶波形,但對于通過相移產(chǎn)生波束轉(zhuǎn)向的寬帶波形,波束可能轉(zhuǎn)移方向(與頻率呈函數(shù)關(guān)系)。如果我們記得時間延遲是線性相移與頻率之間的關(guān)系,則可以直觀地解釋。所以,對于給定的波束方向,要求相移隨頻率變化?;蛘呦喾矗瑢τ诮o定的相移,波束方向隨頻率變化。波束角度隨頻率變化的狀況,被稱為波束斜視。

還考慮到在軸線校準(zhǔn)位置θ = 0時,沒有跨元件的相移,因此不會產(chǎn)生任何波束斜視。因此,波束斜視的量必須與角度θ和頻率變化呈函數(shù)關(guān)系。圖5顯示一個X頻段示例。在本例中,中心頻率為10 GHz,調(diào)制帶寬為2 GHz,且很顯然波束隨頻率和初始波束角度的變化而改變方向。

圖5.32元件線性陣在元件間隔為λ/2時,在X頻段上的波束斜視示例。

波束斜視可以直接計算。使用公式1和公式2,可以計算得出波束方向偏差和波束斜視

此公式如圖6所示。在圖6中,顯示的f/f0比率是有意的。前一個方程的倒數(shù)(f0/f)提供了一種更容易的方法,可以更直觀地表示相對于中心頻率的變化。

圖6.幾種頻率偏差下的波束斜視和波束角度。

關(guān)于波束斜視的幾點觀察發(fā)現(xiàn):

波束角度與頻率的偏差隨著波束角度偏離軸線校準(zhǔn)的角度增大而增大。

低于中心頻率的頻率比高于中心頻率的頻率產(chǎn)生更大的偏差。

低于中心頻率的頻率會使波束更加遠(yuǎn)離軸線校準(zhǔn)。

波束斜視考慮

波束斜視,即轉(zhuǎn)向角度與頻率的偏差,是由相移來實現(xiàn)時間延遲造成的。用真實時間延遲單元來執(zhí)行波束轉(zhuǎn)向則不會出現(xiàn)此問題。

既然波束斜視問題如此明顯,為什么還有人使用移相器,而不是時間延遲單元呢?一般而言,這歸因于設(shè)計簡單,以及移相器和時間延遲單元的IC可用性。時間延遲以某些傳輸線的形式實現(xiàn),所需的總延遲時間與孔徑大小呈函數(shù)關(guān)系。到目前為止,大多數(shù)可用的模擬波束成型IC都是基于相移,但也出現(xiàn)了一些真實時間延遲IC系列,它們在相控陣中更加常見。

在數(shù)字波束成型中,真實時間延遲可以采用DSP邏輯和數(shù)字波束成型算法實現(xiàn)。因此,對于每個元件都數(shù)字化的相控陣架構(gòu),它本身就可以解決波束斜視問題,并提供最高的編程靈活性。但是,這種解決方案的功能、尺寸和成本都會造成問題。

在混合波束成型中,子陣采用模擬波束成型,全陣采用數(shù)字波束成型。這可以提供一些值得考慮的波束斜視減少。波束斜視只受子陣影響,子陣的波束寬度更寬,因此對波束角度偏差的容忍度更大。因此,只要子陣的波束斜視是可容忍的,即可在后接真實時間延遲(數(shù)字波束成型)的子陣內(nèi)采用帶移相器的混合波束成型結(jié)構(gòu)。

總結(jié)

以上就是有關(guān)相控陣天線方向圖三部分中的第2部分內(nèi)容。在第1部分,我們介紹了波束指向和陣列因子。在第2部分,我們討論柵瓣和波束斜視的缺點。在第3部分,我們將討論如何通過天線變窄縮小旁瓣,并讓您深入了解移相器量化誤差。

審核編輯:符乾江
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 波束
    +關(guān)注

    關(guān)注

    0

    文章

    59

    瀏覽量

    16085
  • 相控陣天線
    +關(guān)注

    關(guān)注

    2

    文章

    46

    瀏覽量

    9425
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    使用雙音法測試內(nèi)置本振的相控陣天線

    相控陣天線已廣泛應(yīng)用于移動通信和衛(wèi)星通信,在OTA暗室中使用矢量網(wǎng)絡(luò)分析儀進行校準(zhǔn)、無源和有源測試已經(jīng)較為成熟。但對于內(nèi)置本振的相控陣由于輸入輸出頻率不一致且本振無法接入,常規(guī)測試方法無法進行穩(wěn)定
    的頭像 發(fā)表于 11-26 10:10 ?1998次閱讀
    使用雙音法測試內(nèi)置本振的<b class='flag-5'>相控陣天線</b>

    波束成形技術(shù):從原理到實踐,如何精準(zhǔn)控制無線信號方向

    在頻譜資源日益緊張的今天,波束成形技術(shù)通過將射頻能量聚焦成定向波束,成為提升無線通信容量與效率的關(guān)鍵。本文深入解析波束成形原理,并介紹德思特巴特勒矩陣如何以高穩(wěn)定性、便攜易用的方案,助力研發(fā)人員快速實現(xiàn)精準(zhǔn)的
    的頭像 發(fā)表于 11-21 10:18 ?216次閱讀
    <b class='flag-5'>波束</b>成形技術(shù):從原理到實踐,如何精準(zhǔn)控制無線信號<b class='flag-5'>方向</b>?

    科普 | 為什么低軌衛(wèi)星地面終端不能使用機械伺服天線?

    為什么低軌衛(wèi)星地面終端不能使用機械伺服天線?在低軌衛(wèi)星通信系統(tǒng)(如Starlink、OneWeb等)中,幾乎所有地面終端都采用了有源相控陣天線。相較之下,傳統(tǒng)機械伺服拋物面天線雖然技術(shù)成熟、成本低
    的頭像 發(fā)表于 08-29 17:17 ?413次閱讀
    科普 | 為什么低軌衛(wèi)星地面終端不能使用機械伺服<b class='flag-5'>天線</b>?

    信號發(fā)生器如何與波束賦形算法配合優(yōu)化?

    3D方向)。 信號生成:將算法輸出的波束權(quán)重(幅度和相位)導(dǎo)入信號發(fā)生器,生成實際測試信號。 硬件驗證:通過信號發(fā)生器和信道仿真器構(gòu)建測試環(huán)境,驗證硬件實現(xiàn)與算法仿真的一致性。 參數(shù)調(diào)優(yōu):根據(jù)測試
    發(fā)表于 08-08 14:41

    生成相位相干射頻信號的三種策略

    隨著無線系統(tǒng)對更高數(shù)據(jù)速率和更大覆蓋范圍的需求不斷增長,工程師們采用多天線技術(shù)來實現(xiàn)分集、復(fù)用和波束成形來提高頻譜效率和信噪比,以提升系統(tǒng)性能。
    的頭像 發(fā)表于 07-28 10:11 ?2051次閱讀
    生成相位相干射頻信號的三種策略

    相控陣波束賦形芯片對衛(wèi)星通信的必要性

    在衛(wèi)星通信這個充滿科技魅力的領(lǐng)域,每一次技術(shù)突破都可能重塑未來通信格局。今天就來聊聊其中的關(guān)鍵角色 — 相控陣波束賦形芯片,在衛(wèi)星通信地面終端以及毫米波頻段中到底有多重要。
    的頭像 發(fā)表于 07-16 10:31 ?1065次閱讀

    APMS多通道相參信號發(fā)生器/信號源-MIMO技術(shù)和相控陣雷達(dá)系統(tǒng)中的相參解決方案

    安鉑克科技的APMS多通道相參信號發(fā)生器可滿足多種應(yīng)用的需求,例如測試相控陣、波束成形天線、衛(wèi)星有效載荷以及量子計算。通過獨特的設(shè)計,信號發(fā)生器可提供出色的通道間相位相干性,并可擴展至幾乎任何數(shù)量的通道。PHS選件增加了相位相干
    的頭像 發(fā)表于 07-15 14:07 ?605次閱讀
    APMS多通道相參信號發(fā)生器/信號源-MIMO技術(shù)和<b class='flag-5'>相控陣</b>雷達(dá)系統(tǒng)中的相參解決方案

    Analog Devices Inc. EVAL-CN0566評估板數(shù)據(jù)手冊

    Analog Devices Inc.EVAL-CN0566評估板是一款相控陣波束成形天線演示平臺。該板提供探索波束成形、波束轉(zhuǎn)向、
    的頭像 發(fā)表于 06-16 10:58 ?718次閱讀
    Analog Devices Inc. EVAL-CN0566評估板數(shù)據(jù)手冊

    衛(wèi)星通信測試方案詳解

    衛(wèi)星通信系統(tǒng)的發(fā)展面臨一系列的挑戰(zhàn)與測試,如巨型低軌星座的組網(wǎng)、高吞吐量、高工作頻段(Ka波段、Q波段、 V波段)、高帶寬、多波束控制(采用相控陣天線)、低成本(要求衛(wèi)星生產(chǎn)和發(fā)射成本更低)等。地面接收終端和衛(wèi)星之間距離遙遠(yuǎn),因而會影響鏈路預(yù)算或造成高路徑損耗。
    的頭像 發(fā)表于 05-26 14:47 ?1413次閱讀
    衛(wèi)星通信測試方案詳解

    MVG推出SpeedProbe DL解決方案:有源相控陣天線校準(zhǔn)速度提升至5倍

    系統(tǒng)高達(dá)5倍的校準(zhǔn)速度,顯著提升有源相控陣天線在防務(wù)領(lǐng)域的測試效率與性能。 MVG銷售總監(jiān) Per Noren 表示:“SpeedProbe DL解決方案 在IDEX展會上
    發(fā)表于 04-21 16:35 ?1276次閱讀
    MVG推出SpeedProbe DL解決方案:有源<b class='flag-5'>相控陣天線</b>校準(zhǔn)速度提升至5倍

    深度解析如何利用時延解決方案最大化相控陣性能

    本文將探討TDU在相控陣系統(tǒng)中的角色、它們與天線性能的關(guān)系,以及不同的設(shè)計考量如何影響系統(tǒng)效率。討論還將深入到TDU與移相器的集成、真時延技術(shù),以及波束寬度、掃描角和陣列尺寸之間的關(guān)系。
    的頭像 發(fā)表于 03-25 11:36 ?1704次閱讀
    深度解析如何利用時延解決方案最大化<b class='flag-5'>相控陣</b>性能

    真時延技術(shù)深度解析

    相控陣天線通過移相器、真時延或二者的組合,使合成波束更精確地指向陣列轉(zhuǎn)向角度內(nèi)的所需方向。本文將介紹這兩種方法,以及更寬帶寬的天線陣列是如何推動真時延在其系統(tǒng)設(shè)計中的應(yīng)用。
    的頭像 發(fā)表于 03-13 10:27 ?1328次閱讀
    真時延技術(shù)深度解析

    拆了星鏈終端第三代,明白這相控陣天線的請留言!

    一談起低軌衛(wèi)星,大家勢必會說起馬斯克的星鏈。一談起相控陣天線,大家還是繞不開馬斯克的星鏈。星鏈給大家打了個樣,一眾企業(yè)在模仿,試圖實現(xiàn)超越和跟隨。最近,拆了一臺第三代星鏈終端。但是,看不懂,完全
    的頭像 發(fā)表于 03-05 17:34 ?5407次閱讀
    拆了星鏈終端第三代,明白這<b class='flag-5'>相控陣天線</b>的請留言!

    羅德與施瓦茨和京瓷合作展示毫米波PAAM的OTA特性測試技術(shù)

    京瓷(Kyocera)開發(fā)了一款創(chuàng)新的毫米波相控陣天線模塊(PAAM),能夠同時在不同方向上以不同頻率生成多個波束。這些PAAM將應(yīng)用于5G FR2基礎(chǔ)設(shè)施部署中,例如支持不同運營商在不同頻段上運行
    的頭像 發(fā)表于 03-05 16:23 ?869次閱讀

    通過多張動來生動形象的理解雷達(dá)工作原理

    識別和重建等功能。 下面我們通過幾張動,來生動形象的理解雷達(dá)的工作原理。 雷達(dá)原理 雷達(dá)掃描 相控陣雷達(dá) 相控陣天線 手勢感應(yīng)雷達(dá) 車載雷達(dá) ?
    的頭像 發(fā)表于 12-07 10:02 ?2140次閱讀
    通過多張動<b class='flag-5'>圖</b>來生動形象的理解雷達(dá)工作原理