chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

語(yǔ)義分割方法發(fā)展過(guò)程

新機(jī)器視覺(jué) ? 來(lái)源:新機(jī)器視覺(jué) ? 作者:新機(jī)器視覺(jué) ? 2020-12-28 14:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

語(yǔ)義分割

目的:給定一張圖像,我們要對(duì)這張圖像上的每個(gè)pixel逐一進(jìn)行分類,結(jié)果展示如下圖:

上圖中的實(shí)例分割是語(yǔ)義分割的延伸,要區(qū)別出相同類別的不同個(gè)體。

應(yīng)用場(chǎng)景:無(wú)人駕駛、輔助醫(yī)療等。

語(yǔ)義分割方法發(fā)展過(guò)程:

1.灰度分割(Gray Level Segmentation)

語(yǔ)義分割的最簡(jiǎn)單形式是對(duì)一個(gè)區(qū)域設(shè)定必須滿足的硬編碼規(guī)則或?qū)傩?,進(jìn)而指定特定類別標(biāo)簽. 編碼規(guī)則可以根據(jù)像素的屬性來(lái)構(gòu)建,如灰度級(jí)強(qiáng)度(gray level intensity). 基于該技術(shù)的一種分割方法是 Split and Merge 算法. 該算法是通過(guò)遞歸地將圖像分割為子區(qū)域,直到可以分配標(biāo)簽;然后再合并具有相同標(biāo)簽的相鄰子區(qū)域。

這種方法的問(wèn)題是規(guī)則必須是硬編碼的. 而且,僅使用灰度級(jí)信息是很難表示比如人類等復(fù)雜類別的. 因此,需要特征提取和優(yōu)化技術(shù)來(lái)正確地學(xué)習(xí)復(fù)雜類別的特征表示。

2.條件隨機(jī)場(chǎng)(Conditional Random Fields)

CRFs 是一類用于結(jié)構(gòu)化預(yù)測(cè)的統(tǒng)計(jì)建模方法. 不同于分類算法,CRFs 在進(jìn)行預(yù)測(cè)前,會(huì)考慮像素的鄰近信息(neighboring context),如像素間的關(guān)系. 這使得 CRFs 成為語(yǔ)義分割的理想候選者. 這里介紹下 CRFs 在語(yǔ)義分割中的應(yīng)用.

圖像中的每個(gè)像素都是與有限的可能狀態(tài)集相關(guān). 在語(yǔ)義分割中,target 類別標(biāo)簽就是可能狀態(tài)集. 將一個(gè)狀態(tài)(或,label u) 分配給的單個(gè)像素 x 的成本(cost) 被稱為一元成本(unary cost). 為了對(duì)像素間的關(guān)系進(jìn)行建模, 還進(jìn)一步考慮將一對(duì)標(biāo)簽(labels (u, v)) 分配給一對(duì)像素 (x, y),其被成為成對(duì)成本(pairwise cost). 可以采用直接相鄰的像素對(duì)作為像素對(duì)(Grid CRF);也可以采用圖像中所有的像素構(gòu)建像素對(duì)(Denser CRF)。

圖像中所有 unary cost 和 pairwise cost 的相加和作為 CRF 的能量函數(shù)(或損失函數(shù),loss). 求解最小化即可得到較好的分割輸出。

深度學(xué)習(xí)極大地簡(jiǎn)化了語(yǔ)義分割的流程(pipeline),并得到了較高質(zhì)量的分割結(jié)果

3.FCN

FCN方法的提出成功的將深度學(xué)習(xí)方法成功的引入到了語(yǔ)義分割領(lǐng)域,由于要預(yù)測(cè)的圖像是一個(gè)二維的表示,因此提出了全卷積網(wǎng)絡(luò)用來(lái)抽取圖像中的特征,將得到的高級(jí)語(yǔ)義特征上采樣到指定的維度,從而得到了最終的預(yù)測(cè)結(jié)果,從而自然的形成了Encoder-Decoder框架,這也成為了語(yǔ)義分割領(lǐng)域中通用框架之一。

具體的模型圖如下:

由于在Encoder中獲取到圖像的高級(jí)語(yǔ)義,但是其并不是最終分割的結(jié)果,因此作者采用轉(zhuǎn)置卷積的方法將該高級(jí)特征上采樣到指定的維度,從而得到最終的分割結(jié)果。由于直接上采樣之后的結(jié)果并不好,因此在改論文中引入了跳躍模型就是將不同卷積層下獲取到的特征相融合,從而改善模型的效果,其具體結(jié)構(gòu)如下所示:

4.U-NET, SegNet 等

為了改善FCN中的弊端,隨后提出了很多模型最經(jīng)典的是U-Net,SegNet,但是他們的本質(zhì)上并沒(méi)有改變Encoder-Decoder模型的架構(gòu)。

5.DeepLab系列

DeepLab的出現(xiàn)帶來(lái)了一個(gè)新的方法就是擴(kuò)展卷積(空洞卷積)方法,卷積層引入了一個(gè)稱為 “擴(kuò)張率(dilation rate)”的新參數(shù),該參數(shù)定義了卷積核處理數(shù)據(jù)時(shí)各值的間距。其目的是為了擴(kuò)大模型的感受野,使其能夠感受到更大范圍下的特征信息。具體的體現(xiàn)如下所示:

擴(kuò)展卷積方法的提出讓人們可以去除Encoder-Decoder框架的限制。隨后deeplab算法的改進(jìn)也提出了例如多尺度學(xué)習(xí)的通則紅描述方法(ASPP等)

6.NOW

面對(duì)監(jiān)督式方法---最近的方法大家更注重于實(shí)時(shí)的語(yǔ)義分割任務(wù),也就是輕量級(jí)的語(yǔ)義分割網(wǎng)絡(luò)的設(shè)計(jì)。當(dāng)然還有一些其他的方法,例如針對(duì)不同的領(lǐng)域設(shè)計(jì)不同的語(yǔ)義分割網(wǎng)絡(luò)、改進(jìn)上采樣方法等。

面對(duì)弱監(jiān)督方法---目前出現(xiàn)了很多弱監(jiān)督方法,就是通過(guò)學(xué)習(xí)圖像分類的數(shù)據(jù)集(image-level tag)中的信息,來(lái)完成語(yǔ)義分割這種密度預(yù)測(cè)的任務(wù)。當(dāng)然還有使用框架注釋來(lái)標(biāo)注數(shù)據(jù)(bounding-boxes tag)的。

語(yǔ)義分割領(lǐng)域中困難的地方:

1、數(shù)據(jù)問(wèn)題:分割不像檢測(cè)等任務(wù),只需要標(biāo)注一個(gè)類別就可以拿來(lái)使用,分割需要精確的像素級(jí)標(biāo)注,包括每一個(gè)目標(biāo)的輪廓等信息,因此使得制作數(shù)據(jù)集成本過(guò)高;

2、計(jì)算資源問(wèn)題:現(xiàn)在想要得到較高的精度的語(yǔ)義分割模型就需要使用類似于ResNet101等深網(wǎng)絡(luò)。同時(shí),分割預(yù)測(cè)了每一個(gè)像素,這就要求feature map的分辨率盡可能的高,這都說(shuō)明了計(jì)算資源的問(wèn)題,雖然也有一些輕量級(jí)的網(wǎng)絡(luò),但精度還是太低了;

3、精細(xì)分割:目前的方法中對(duì)于圖像中的大體積的東西能夠很好的分類,但是對(duì)于細(xì)小的類別,由于其輪廓太小,從而無(wú)法精確的定位輪廓,造成精度較低;

4、上下文信息:分割中上下文信息很重要,否則會(huì)造成一個(gè)目標(biāo)被分成多個(gè)part,或者不同類別目標(biāo)分類成相同類別;

評(píng)價(jià)指標(biāo):

1、執(zhí)行時(shí)間:速度或運(yùn)行時(shí)間是一個(gè)非常有價(jià)值的度量,因?yàn)榇蠖鄶?shù)系統(tǒng)需要保證推理時(shí)間可以滿足硬實(shí)時(shí)的需求。然而在通常的實(shí)驗(yàn)中其影響是很不明顯的,并且該指標(biāo)非常依賴硬件設(shè)備及后臺(tái)實(shí)現(xiàn),致使一些比較是無(wú)用的。

2、內(nèi)存占用:在運(yùn)行時(shí)間相同的情況下,記錄系統(tǒng)運(yùn)行狀態(tài)下內(nèi)存占用的極值和均值是及其有價(jià)值的。

3、精確度:這里指的是逐像素標(biāo)記的精度測(cè)量,假設(shè)共有k個(gè)類(從l0到lk其中有一個(gè)類別是屬于背景的。),Pij表示本屬于i類但是被預(yù)測(cè)為j類的像素個(gè)數(shù),Pii表示為真正分對(duì)類的數(shù)量,而Pij與Pji分別被稱為假正樣本和假負(fù)樣本。

1)Pixel Accuracy(PA,像素精度):標(biāo)記正確的像素占總像素的比例

0c3ae84c-29d7-11eb-a64d-12bb97331649.jpg

2)Mean Pixel Accuracy(MPA,平均像素精度):計(jì)算每個(gè)類內(nèi)被正確分類像素?cái)?shù)比例,之后求所有類的平均數(shù)。

0c5ff542-29d7-11eb-a64d-12bb97331649.jpg

3)Mean Intersection over Union(MIoU,均交并比):為語(yǔ)義分割的標(biāo)準(zhǔn)度量,其計(jì)算兩個(gè)集合的交集和并集之比,這兩個(gè)集合分別為ground truth 與predicted segmentation,在每個(gè)類上計(jì)算IoU,之后將其求平均。

-----IoU即真正樣本數(shù)量/(真正樣本數(shù)量+假正樣本數(shù)量+假負(fù)樣本數(shù)量)

0c815476-29d7-11eb-a64d-12bb97331649.jpg

4)Frequency weighted Intersection over Union(FWIoU,頻權(quán)交并):是MIoU的一種提升,這種方法根據(jù)每個(gè)類出現(xiàn)的頻率為期設(shè)置權(quán)重。

0ca6d228-29d7-11eb-a64d-12bb97331649.jpg

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 圖像
    +關(guān)注

    關(guān)注

    2

    文章

    1094

    瀏覽量

    41240
  • 函數(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    4379

    瀏覽量

    64843
  • 分割
    +關(guān)注

    關(guān)注

    0

    文章

    17

    瀏覽量

    12034

原文標(biāo)題:語(yǔ)義分割入門的總結(jié)

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【正點(diǎn)原子STM32MP257開(kāi)發(fā)板試用】基于 DeepLab 模型的圖像分割

    是谷歌團(tuán)隊(duì)提出的一種用于語(yǔ)義分割的深度學(xué)習(xí)模型,屬于 DeepLab 系列模型的第三代版本。它在圖像語(yǔ)義分割任務(wù)中表現(xiàn)優(yōu)異,能夠高效地捕獲圖像的多尺度上下文信息,并生成高分辨率的
    發(fā)表于 06-21 21:11

    SparseViT:以非語(yǔ)義為中心、參數(shù)高效的稀疏化視覺(jué)Transformer

    (IML)都遵循“語(yǔ)義分割主干網(wǎng)絡(luò)”與“精心制作的手工制作非語(yǔ)義特征提取”相結(jié)合的設(shè)計(jì),這種方法嚴(yán)重限制了模型在未知場(chǎng)景的偽影提取能力。 論文標(biāo)題: Can We Get Rid
    的頭像 發(fā)表于 01-15 09:30 ?458次閱讀
    SparseViT:以非<b class='flag-5'>語(yǔ)義</b>為中心、參數(shù)高效的稀疏化視覺(jué)Transformer

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】2.具身智能機(jī)器人的基礎(chǔ)模塊

    目前高速發(fā)展的大模型能給具身智能帶來(lái)一些突破性的進(jìn)展。 對(duì)于感知系統(tǒng),要做的主要任務(wù)是物體檢測(cè),語(yǔ)義分割,立體視覺(jué),鳥瞰視角感知。 有很多算法都可以實(shí)現(xiàn)物體檢測(cè),比如文章提到的HOG + SVM算法
    發(fā)表于 01-04 19:22

    利用VLM和MLLMs實(shí)現(xiàn)SLAM語(yǔ)義增強(qiáng)

    語(yǔ)義同步定位與建圖(SLAM)系統(tǒng)在對(duì)鄰近的語(yǔ)義相似物體進(jìn)行建圖時(shí)面臨困境,特別是在復(fù)雜的室內(nèi)環(huán)境中。本文提出了一種面向?qū)ο骃LAM的語(yǔ)義增強(qiáng)(SEO-SLAM)的新型SLAM系統(tǒng),借助視覺(jué)語(yǔ)言模型
    的頭像 發(fā)表于 12-05 10:00 ?1365次閱讀
    利用VLM和MLLMs實(shí)現(xiàn)SLAM<b class='flag-5'>語(yǔ)義</b>增強(qiáng)

    如何設(shè)定機(jī)器人語(yǔ)義地圖的細(xì)粒度級(jí)別

    和區(qū)域與封閉的語(yǔ)義標(biāo)簽集對(duì)應(yīng)的工作。然而,封閉集檢測(cè)在能夠表示的概念集方面存在固有的限制,并且不能很好地處理自然語(yǔ)言的內(nèi)在歧義性和可變性。為了克服這些限制,一組新的方法開(kāi)始利用視覺(jué)語(yǔ)言基礎(chǔ)模型進(jìn)行開(kāi)放集語(yǔ)義理解。這
    的頭像 發(fā)表于 11-12 10:54 ?674次閱讀
    如何設(shè)定機(jī)器人<b class='flag-5'>語(yǔ)義</b>地圖的細(xì)粒度級(jí)別

    常見(jiàn)人體姿態(tài)評(píng)估顯示方式的兩種方式

    人體姿態(tài)評(píng)估中有兩種常見(jiàn)的顯示方式,分別是火柴人效果與BodyPix效果。其中火柴人效果本質(zhì)就是基于關(guān)鍵點(diǎn)的深度學(xué)習(xí)模型推理以后的顯示效果;Bodypix本質(zhì)就就是語(yǔ)義分割模型
    的頭像 發(fā)表于 11-11 11:21 ?653次閱讀
    常見(jiàn)人體姿態(tài)評(píng)估顯示方式的兩種方式

    手冊(cè)上新 |迅為RK3568開(kāi)發(fā)板NPU例程測(cè)試

    測(cè)試 6.1 deeplabv3語(yǔ)義分割 6.2 lite_transformer 6.3 LPRNet車牌識(shí)別 6.4 mobilenet圖像分類 6.5 PPOCR-Rec文字識(shí)別 6.6
    發(fā)表于 10-23 14:06

    語(yǔ)義分割25種損失函數(shù)綜述和展望

    語(yǔ)義圖像分割,即將圖像中的每個(gè)像素分類到特定的類別中,是許多視覺(jué)理解系統(tǒng)中的重要組成部分。作為評(píng)估統(tǒng)計(jì)模型性能的主要標(biāo)準(zhǔn),損失函數(shù)對(duì)于塑造基于深度學(xué)習(xí)的分割算法的發(fā)
    的頭像 發(fā)表于 10-22 08:04 ?1613次閱讀
    <b class='flag-5'>語(yǔ)義</b><b class='flag-5'>分割</b>25種損失函數(shù)綜述和展望

    畫面分割器怎么調(diào)試

    畫面分割器,通常指的是視頻畫面分割器,它是一種可以將一個(gè)視頻信號(hào)分割成多個(gè)小畫面的設(shè)備。這種設(shè)備廣泛應(yīng)用于監(jiān)控系統(tǒng)、視頻會(huì)議、多畫面顯示等場(chǎng)景。調(diào)試畫面分割器是一個(gè)技術(shù)性很強(qiáng)的工作,需
    的頭像 發(fā)表于 10-17 09:32 ?1073次閱讀

    畫面分割器怎么連接

    畫面分割器,也稱為視頻分割器或多畫面處理器,是一種可以將多個(gè)視頻信號(hào)源分割成單個(gè)畫面或多個(gè)畫面顯示在單個(gè)監(jiān)視器上的設(shè)備。這種設(shè)備廣泛應(yīng)用于監(jiān)控系統(tǒng)、視頻會(huì)議、多媒體展示等領(lǐng)域。 一、畫面分割
    的頭像 發(fā)表于 10-17 09:29 ?981次閱讀

    3D堆疊發(fā)展過(guò)程中面臨的挑戰(zhàn)

    3D堆疊將不斷發(fā)展,以實(shí)現(xiàn)更復(fù)雜和集成的設(shè)備——從平面到立方體
    的頭像 發(fā)表于 09-19 18:27 ?1784次閱讀
    3D堆疊<b class='flag-5'>發(fā)展過(guò)程</b>中面臨的挑戰(zhàn)

    手冊(cè)上新 |迅為RK3568開(kāi)發(fā)板NPU例程測(cè)試

    測(cè)試 6.1 deeplabv3語(yǔ)義分割 6.2 lite_transformer 6.3 LPRNet車牌識(shí)別 6.4 mobilenet圖像分類 6.5 PPOCR-Rec文字識(shí)別 6.6
    發(fā)表于 08-12 11:03

    圖像語(yǔ)義分割的實(shí)用性是什么

    圖像語(yǔ)義分割是一種重要的計(jì)算機(jī)視覺(jué)任務(wù),它旨在將圖像中的每個(gè)像素分配到相應(yīng)的語(yǔ)義類別中。這項(xiàng)技術(shù)在許多領(lǐng)域都有廣泛的應(yīng)用,如自動(dòng)駕駛、醫(yī)學(xué)圖像分析、機(jī)器人導(dǎo)航等。 一、圖像語(yǔ)義
    的頭像 發(fā)表于 07-17 09:56 ?912次閱讀

    圖像分割語(yǔ)義分割的區(qū)別與聯(lián)系

    圖像分割語(yǔ)義分割是計(jì)算機(jī)視覺(jué)領(lǐng)域中兩個(gè)重要的概念,它們?cè)趫D像處理和分析中發(fā)揮著關(guān)鍵作用。 1. 圖像分割簡(jiǎn)介 圖像分割是將圖像劃分為多個(gè)區(qū)
    的頭像 發(fā)表于 07-17 09:55 ?1949次閱讀

    圖像分割與目標(biāo)檢測(cè)的區(qū)別是什么

    圖像分割與目標(biāo)檢測(cè)是計(jì)算機(jī)視覺(jué)領(lǐng)域的兩個(gè)重要任務(wù),它們?cè)谠S多應(yīng)用場(chǎng)景中都發(fā)揮著關(guān)鍵作用。然而,盡管它們?cè)谀承┓矫嬗邢嗨浦?,但它們的目?biāo)、方法和應(yīng)用場(chǎng)景有很大的不同。本文將介紹圖像分割與目標(biāo)檢測(cè)
    的頭像 發(fā)表于 07-17 09:53 ?2353次閱讀