chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

科學(xué)家研發(fā)可判斷顏值的生成式神經(jīng)網(wǎng)絡(luò)

如意 ? 來源:cnBeta.COM ? 作者:cnBeta.COM ? 2021-03-07 11:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

怎么樣的五官組合會被更多人認為高顏值呢?近日,在 Tuukka Ruotsalo 副教授的帶領(lǐng)下,來自赫爾辛基大學(xué)和哥本哈根大學(xué)的科學(xué)家們研究出了一個生成式對抗神經(jīng)網(wǎng)絡(luò),生成了數(shù)百張逼真的人像。然后這些計算機生成圖像被逐一展示給 30 名測試對象,每個人都被指示將更多的注意力集中在他們認為最有吸引力的面孔上,同時使用 EEG(腦電圖)記錄他們大腦的電活動。

隨后,基于機器學(xué)習(xí)算法確定哪些面孔對每個人產(chǎn)生的活動量最大,然后確定這些面孔有哪些共同的特征?;谶@些數(shù)據(jù),神經(jīng)網(wǎng)絡(luò)再繼續(xù)產(chǎn)生結(jié)合這些特征的新面孔。在一個雙盲實驗中,這些新面孔然后和許多其他面孔的圖像一起展示給這個人。87% 的人選擇了新面孔中最有吸引力的面孔--隨著技術(shù)的進一步發(fā)展,這個數(shù)字應(yīng)該會上升。

希望該團隊的研究結(jié)果最終可以用來幫助計算機系統(tǒng)理解主觀偏好,或許還可以用來識別人們的無意識態(tài)度。高級研究員 Michiel Spapé 說:“這項研究表明,我們能夠通過將人工神經(jīng)網(wǎng)絡(luò)與大腦反應(yīng)連接起來,生成與個人偏好相匹配的圖像。迄今為止,計算機視覺在根據(jù)客觀模式對圖像進行分類方面非常成功。通過將大腦反應(yīng)帶入其中,我們表明有可能根據(jù)心理屬性,如個人品味,來檢測和生成圖像” 。

有關(guān)該研究的論文近日發(fā)表在《IEEE Transactions in Affective Computing》雜志上。

責(zé)編AJX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4829

    瀏覽量

    106819
  • AI
    AI
    +關(guān)注

    關(guān)注

    89

    文章

    38170

    瀏覽量

    296865
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一個卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識別。一旦模型被訓(xùn)練并保存,就可以用于對新圖像進行推理和預(yù)測。要使用生成的模型進行推理,可以按照以下步驟進行操作: 1.
    發(fā)表于 10-22 07:03

    國際類腦計算科學(xué)家Yulia Sandamirskaya教授加盟時識科技

    近日,國際類腦計算與神經(jīng)形態(tài)機器人領(lǐng)域知名科學(xué)家Yulia Sandamirskaya 教授,作為科學(xué)家顧問正式加入時識科技(SynSense)。
    的頭像 發(fā)表于 10-13 13:50 ?455次閱讀

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    1.算法簡介液態(tài)神經(jīng)網(wǎng)絡(luò)(LiquidNeuralNetworks,LNN)是一種新型的神經(jīng)網(wǎng)絡(luò)架構(gòu),其設(shè)計理念借鑒自生物神經(jīng)系統(tǒng),特別是秀麗隱桿線蟲的神經(jīng)結(jié)構(gòu),盡管這種微生物的
    的頭像 發(fā)表于 09-28 10:03 ?708次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    如何在機器視覺中部署深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習(xí)的目標(biāo)檢測可定位已訓(xùn)練的目標(biāo)類別,并通過矩形框(邊界框)對其進行標(biāo)識。 在討論人工智能(AI)或深度學(xué)習(xí)時,經(jīng)常會出現(xiàn)“神經(jīng)網(wǎng)絡(luò)”、“黑箱”、“標(biāo)注”等術(shù)語。這些概念對非專業(yè)
    的頭像 發(fā)表于 09-10 17:38 ?703次閱讀
    如何在機器視覺中部署深度學(xué)習(xí)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    復(fù)星醫(yī)藥使用亞馬遜云科技生成AI技術(shù)賦能醫(yī)療撰寫場景 助力科學(xué)家效率躍升

    進程。通過“臨床試驗報告一致性檢查”和“研發(fā)文獻翻譯”兩大功能,復(fù)星醫(yī)藥可解放科學(xué)家生產(chǎn)力,使其專注于創(chuàng)新藥研發(fā)的核心工作。在亞馬遜云科技的加持下,“臨床試驗報告一致性檢查”可覆蓋研究人員90%的撰寫場景,工作效率提升70%;而
    發(fā)表于 07-14 14:16 ?1051次閱讀

    基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析

    本文的目的是在一個神經(jīng)網(wǎng)絡(luò)已經(jīng)通過python或者MATLAB訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型,將訓(xùn)練好的模型的權(quán)重和偏置文件以TXT文件格式導(dǎo)出,然后通過python程序?qū)xt文件轉(zhuǎn)化為coe文件,(coe
    的頭像 發(fā)表于 06-03 15:51 ?903次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的步驟解析

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?1324次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1599次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過計算每層網(wǎng)絡(luò)的誤差,并將這些誤差反向傳播到前一層,從而調(diào)整權(quán)重,使得
    的頭像 發(fā)表于 02-12 15:18 ?1290次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?1358次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:13 ?1535次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達,適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)在圖像識別中應(yīng)用的分析: 一、BP神經(jīng)網(wǎng)絡(luò)基本原理 BP
    的頭像 發(fā)表于 02-12 15:12 ?1193次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個神經(jīng)元組成,神經(jīng)元之間通過
    的頭像 發(fā)表于 01-23 13:52 ?853次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過時,現(xiàn)在它們只是能夠在某些應(yīng)用中提供最先進性能的機器學(xué)習(xí)模型。近年來,由于
    的頭像 發(fā)表于 01-09 10:24 ?2266次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法