chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

關于深度學習圖像分類不得不說的技巧詳解

新機器視覺 ? 來源:開源博客 ? 作者:我是算法工程師 ? 2021-04-01 14:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

計算機視覺主要問題有圖像分類、目標檢測和圖像分割等。針對圖像分類任務,提升準確率的方法路線有兩條,一個是模型的修改,另一個是各種數(shù)據(jù)處理和訓練的技巧(tricks)。圖像分類中的各種技巧對于目標檢測、圖像分割等任務也有很好的作用,因此值得好好總結。本文在精讀論文的基礎上,總結了圖像分類任務的各種tricks如下:

Warmup

Linear scaling learning rate

Label-smoothing

Random image cropping and patching

Knowledge Distillation

Cutout

Random erasing

Cosine learning rate decay

Mixup training

AdaBoud

AutoAugment

其他經(jīng)典的tricks

Warmup

學習率是神經(jīng)網(wǎng)絡訓練中最重要的超參數(shù)之一,針對學習率的技巧有很多。Warm up是在ResNet論文[1]中提到的一種學習率預熱的方法。由于剛開始訓練時模型的權重(weights)是隨機初始化的(全部置為0是一個坑,原因見[2]),此時選擇一個較大的學習率,可能會帶來模型的不穩(wěn)定。學習率預熱就是在剛開始訓練的時候先使用一個較小的學習率,訓練一些epoches或iterations,等模型穩(wěn)定時再修改為預先設置的學習率進行訓練。論文[1]中使用一個110層的ResNet在cifar10上訓練時,先用0.01的學習率訓練直到訓練誤差低于80%(大概訓練了400個iterations),然后使用0.1的學習率進行訓練。

上述的方法是constant warmup,18年Facebook又針對上面的warmup進行了改進[3],因為從一個很小的學習率一下變?yōu)楸容^大的學習率可能會導致訓練誤差突然增大。論文[3]提出了gradual warmup來解決這個問題,即從最開始的小學習率開始,每個iteration增大一點,直到最初設置的比較大的學習率。

Gradual warmup代碼如下:

fromtorch.optim.lr_scheduler import_LRScheduler

classGradualWarmupScheduler(_LRScheduler):

“”“

Args:

optimizer (Optimizer): Wrapped optimizer.

multiplier: target learning rate = base lr * multiplier

total_epoch: target learning rate is reached at total_epoch, gradually

after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)

”“”

def__init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):

self.multiplier = multiplier

ifself.multiplier 《= 1.:

raiseValueError(‘multiplier should be greater than 1.’)

self.total_epoch = total_epoch

self.after_scheduler = after_scheduler

self.finished = False

super().__init__(optimizer)

defget_lr(self):

ifself.last_epoch 》 self.total_epoch:

ifself.after_scheduler:

ifnotself.finished:

self.after_scheduler.base_lrs = [base_lr * self.multiplier forbase_lr inself.base_lrs]

self.finished = True

returnself.after_scheduler.get_lr()

return[base_lr * self.multiplier forbase_lr inself.base_lrs]

return[base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) forbase_lr inself.base_lrs]

defstep(self, epoch=None):

ifself.finished andself.after_scheduler:

returnself.after_scheduler.step(epoch)

else:

returnsuper(GradualWarmupScheduler, self).step(epoch)

Linear scaling learning rate

Linear scaling learning rate是在論文[3]中針對比較大的batch size而提出的一種方法。

在凸優(yōu)化問題中,隨著批量的增加,收斂速度會降低,神經(jīng)網(wǎng)絡也有類似的實證結果。隨著batch size的增大,處理相同數(shù)據(jù)量的速度會越來越快,但是達到相同精度所需要的epoch數(shù)量越來越多。也就是說,使用相同的epoch時,大batch size訓練的模型與小batch size訓練的模型相比,驗證準確率會減小。

上面提到的gradual warmup是解決此問題的方法之一。另外,linear scaling learning rate也是一種有效的方法。在mini-batch SGD訓練時,梯度下降的值是隨機的,因為每一個batch的數(shù)據(jù)是隨機選擇的。增大batch size不會改變梯度的期望,但是會降低它的方差。也就是說,大batch size會降低梯度中的噪聲,所以我們可以增大學習率來加快收斂。

具體做法很簡單,比如ResNet原論文[1]中,batch size為256時選擇的學習率是0.1,當我們把batch size變?yōu)橐粋€較大的數(shù)b時,學習率應該變?yōu)?0.1 × b/256。

Label-smoothing

在分類問題中,我們的最后一層一般是全連接層,然后對應標簽的one-hot編碼,即把對應類別的值編碼為1,其他為0。這種編碼方式和通過降低交叉熵損失來調整參數(shù)的方式結合起來,會有一些問題。這種方式會鼓勵模型對不同類別的輸出分數(shù)差異非常大,或者說,模型過分相信它的判斷。但是,對于一個由多人標注的數(shù)據(jù)集,不同人標注的準則可能不同,每個人的標注也可能會有一些錯誤。模型對標簽的過分相信會導致過擬合。

標簽平滑(Label-smoothing regularization,LSR)是應對該問題的有效方法之一,它的具體思想是降低我們對于標簽的信任,例如我們可以將損失的目標值從1稍微降到0.9,或者將從0稍微升到0.1。標簽平滑最早在inception-v2[4]中被提出,它將真實的概率改造為:

1fd2e078-92a8-11eb-8b86-12bb97331649.jpg

其中,ε是一個小的常數(shù),K是類別的數(shù)目,y是圖片的真正的標簽,i代表第i個類別,q_i是圖片為第i類的概率。

總的來說,LSR是一種通過在標簽y中加入噪聲,實現(xiàn)對模型約束,降低模型過擬合程度的一種正則化方法。

LSR代碼如下:

importtorch

importtorch.nn asnn

classLSR(nn.Module):

def__init__(self, e=0.1, reduction=‘mean’):

super().__init__()

self.log_softmax = nn.LogSoftmax(dim=1)

self.e = e

self.reduction = reduction

def_one_hot(self, labels, classes, value=1):

“”“

Convert labels to one hot vectors

Args:

labels: torch tensor in format [label1, label2, label3, 。..]

classes: int, number of classes

value: label value in one hot vector, default to 1

Returns:

return one hot format labels in shape [batchsize, classes]

”“”

one_hot = torch.zeros(labels.size(0), classes)

#labels and value_added size must match

labels = labels.view(labels.size(0), -1)

value_added = torch.Tensor(labels.size(0), 1).fill_(value)

value_added = value_added.to(labels.device)

one_hot = one_hot.to(labels.device)

one_hot.scatter_add_(1, labels, value_added)

returnone_hot

def_smooth_label(self, target, length, smooth_factor):

“”“convert targets to one-hot format, and smooth

them.

Args:

target: target in form with [label1, label2, label_batchsize]

length: length of one-hot format(number of classes)

smooth_factor: smooth factor for label smooth

Returns:

smoothed labels in one hot format

”“”

one_hot = self._one_hot(target, length, value=1- smooth_factor)

one_hot += smooth_factor / length

returnone_hot.to(target.device)

Random image cropping and patching

Random image cropping and patching (RICAP)[7]方法隨機裁剪四個圖片的中部分,然后把它們拼接為一個圖片,同時混合這四個圖片的標簽。

RICAP在caifar10上達到了2.19%的錯誤率。

1fdbfe1a-92a8-11eb-8b86-12bb97331649.jpg

如下圖所示,Ix, Iy是原始圖片的寬和高。w和h稱為boundary position,它決定了四個裁剪得到的小圖片的尺寸。w和h從beta分布Beta(β, β)中隨機生成,β也是RICAP的超參數(shù)。最終拼接的圖片尺寸和原圖片尺寸保持一致。

1fea15d6-92a8-11eb-8b86-12bb97331649.jpg

20213548-92a8-11eb-8b86-12bb97331649.jpg

RICAP的代碼如下:

beta = 0.3# hyperparameter

for(images, targets) intrain_loader:

# get the image size

I_x, I_y = images.size()[2:]

# draw a boundry position (w, h)

w = int(np.round(I_x * np.random.beta(beta, beta)))

h = int(np.round(I_y * np.random.beta(beta, beta)))

w_ = [w, I_x - w, w, I_x - w]

h_ = [h, h, I_y - h, I_y - h]

# select and crop four images

cropped_images = {}

c_ = {}

W_ = {}

fork inrange(4):

index = torch.randperm(images.size(0))

x_k = np.random.randint(0, I_x - w_[k] + 1)

y_k = np.random.randint(0, I_y - h_[k] + 1)

cropped_images[k] = images[index][:, :, x_k:x_k + w_[k], y_k:y_k + h_[k]]

c_[k] = target[index].cuda()

W_[k] = w_[k] * h_[k] / (I_x * I_y)

# patch cropped images

patched_images = torch.cat(

(torch.cat((cropped_images[0], cropped_images[1]), 2),

torch.cat((cropped_images[2], cropped_images[3]), 2)),

3)

#patched_images = patched_images.cuda()

# get output

output = model(patched_images)

# calculate loss and accuracy

loss = sum([W_[k] * criterion(output, c_[k]) fork inrange(4)])

acc = sum([W_[k] * accuracy(output, c_[k])[0] fork inrange(4)])

Knowledge Distillation

提高幾乎所有機器學習算法性能的一種非常簡單的方法是在相同的數(shù)據(jù)上訓練許多不同的模型,然后對它們的預測進行平均。但是使用所有的模型集成進行預測是比較麻煩的,并且可能計算量太大而無法部署到大量用戶。Knowledge Distillation(知識蒸餾)[8]方法就是應對這種問題的有效方法之一。

在知識蒸餾方法中,我們使用一個教師模型來幫助當前的模型(學生模型)訓練。教師模型是一個較高準確率的預訓練模型,因此學生模型可以在保持模型復雜度不變的情況下提升準確率。比如,可以使用ResNet-152作為教師模型來幫助學生模型ResNet-50訓練。在訓練過程中,我們會加一個蒸餾損失來懲罰學生模型和教師模型的輸出之間的差異。

給定輸入,假定p是真正的概率分布,z和r分別是學生模型和教師模型最后一個全連接層的輸出。之前我們會用交叉熵損失l(p,softmax(z))來度量p和z之間的差異,這里的蒸餾損失同樣用交叉熵。所以,使用知識蒸餾方法總的損失函數(shù)是

2052d530-92a8-11eb-8b86-12bb97331649.jpg

上式中,第一項還是原來的損失函數(shù),第二項是添加的用來懲罰學生模型和教師模型輸出差異的蒸餾損失。其中,T是一個溫度超參數(shù),用來使softmax的輸出更加平滑的。實驗證明,用ResNet-152作為教師模型來訓練ResNet-50,可以提高后者的準確率。

Cutout

Cutout[9]是一種新的正則化方法。原理是在訓練時隨機把圖片的一部分減掉,這樣能提高模型的魯棒性。它的來源是計算機視覺任務中經(jīng)常遇到的物體遮擋問題。通過cutout生成一些類似被遮擋的物體,不僅可以讓模型在遇到遮擋問題時表現(xiàn)更好,還能讓模型在做決定時更多地考慮環(huán)境(context)。

代碼如下:

importtorch

importnumpy asnp

classCutout(object):

“”“Randomly mask out one or more patches from an image.

Args:

n_holes (int): Number of patches to cut out of each image.

length (int): The length (in pixels) of each square patch.

”“”

def__init__(self, n_holes, length):

self.n_holes = n_holes

self.length = length

def__call__(self, img):

“”“

Args:

img (Tensor): Tensor image of size (C, H, W)。

Returns:

Tensor: Image with n_holes of dimension length x length cut out of it.

”“”

h = img.size(1)

w = img.size(2)

mask = np.ones((h, w), np.float32)

forn inrange(self.n_holes):

y = np.random.randint(h)

x = np.random.randint(w)

y1 = np.clip(y - self.length // 2, 0, h)

y2 = np.clip(y + self.length // 2, 0, h)

x1 = np.clip(x - self.length // 2, 0, w)

x2 = np.clip(x + self.length // 2, 0, w)

mask[y1: y2, x1: x2] = 0.

mask = torch.from_numpy(mask)

mask = mask.expand_as(img)

img = img * mask

returnimg

效果如下圖,每個圖片的一小部分被cutout了。

Random erasing

Random erasing[6]其實和cutout非常類似,也是一種模擬物體遮擋情況的數(shù)據(jù)增強方法。區(qū)別在于,cutout是把圖片中隨機抽中的矩形區(qū)域的像素值置為0,相當于裁剪掉,random erasing是用隨機數(shù)或者數(shù)據(jù)集中像素的平均值替換原來的像素值。而且,cutout每次裁剪掉的區(qū)域大小是固定的,Random erasing替換掉的區(qū)域大小是隨機的。

Random erasing代碼如下:

from__future__ importabsolute_import

fromtorchvision.transforms import*

fromPIL importImage

importrandom

importmath

importnumpy asnp

importtorch

classRandomErasing(object):

‘’‘

probability: The probability that the operation will be performed.

sl: min erasing area

sh: max erasing area

r1: min aspect ratio

mean: erasing value

’‘’

def__init__(self, probability = 0.5, sl = 0.02, sh = 0.4, r1 = 0.3, mean=[0.4914, 0.4822, 0.4465]):

self.probability = probability

self.mean = mean

self.sl = sl

self.sh = sh

self.r1 = r1

def__call__(self, img):

ifrandom.uniform(0, 1) 》 self.probability:

returnimg

forattempt inrange(100):

area = img.size()[1] * img.size()[2]

target_area = random.uniform(self.sl, self.sh) * area

aspect_ratio = random.uniform(self.r1, 1/self.r1)

h = int(round(math.sqrt(target_area * aspect_ratio)))

w = int(round(math.sqrt(target_area / aspect_ratio)))

ifw 《 img.size()[2] andh 《 img.size()[1]:

x1 = random.randint(0, img.size()[1] - h)

y1 = random.randint(0, img.size()[2] - w)

ifimg.size()[0] == 3:

img[0, x1:x1+h, y1:y1+w] = self.mean[0]

img[1, x1:x1+h, y1:y1+w] = self.mean[1]

img[2, x1:x1+h, y1:y1+w] = self.mean[2]

else:

img[0, x1:x1+h, y1:y1+w] = self.mean[0]

returnimg

returnimg

Cosine learning rate decay

在warmup之后的訓練過程中,學習率不斷衰減是一個提高精度的好方法。其中有step decay和cosine decay等,前者是隨著epoch增大學習率不斷減去一個小的數(shù),后者是讓學習率隨著訓練過程曲線下降。

對于cosine decay,假設總共有T個batch(不考慮warmup階段),在第t個batch時,學習率η_t為:

20caef7a-92a8-11eb-8b86-12bb97331649.jpg

這里,η代表初始設置的學習率。這種學習率遞減的方式稱之為cosine decay。

下面是帶有warmup的學習率衰減的可視化圖[4]。其中,圖(a)是學習率隨epoch增大而下降的圖,可以看出cosine decay比step decay更加平滑一點。圖(b)是準確率隨epoch的變化圖,兩者最終的準確率沒有太大差別,不過cosine decay的學習過程更加平滑。

20d720c4-92a8-11eb-8b86-12bb97331649.jpg

在pytorch的torch.optim.lr_scheduler中有更多的學習率衰減的方法,至于哪個效果好,可能對于不同問題答案是不一樣的。對于step decay,使用方法如下:

# Assuming optimizer uses lr = 0.05 for all groups

# lr = 0.05 if epoch 《 30

# lr = 0.005 if 30 《= epoch 《 60

# lr = 0.0005 if 60 《= epoch 《 90

fromtorch.optim.lr_scheduler importStepLR

scheduler = StepLR(optimizer, step_size=30, gamma=0.1)

forepoch inrange(100):

scheduler.step()

train(。..)

validate(。..)

Mixup training

Mixup[10]是一種新的數(shù)據(jù)增強的方法。Mixup training,就是每次取出2張圖片,然后將它們線性組合,得到新的圖片,以此來作為新的訓練樣本,進行網(wǎng)絡的訓練,如下公式,其中x代表圖像數(shù)據(jù),y代表標簽,則得到的新的xhat, yhat。

20f1b07e-92a8-11eb-8b86-12bb97331649.jpg

其中,λ是從Beta(α, α)隨機采樣的數(shù),在[0,1]之間。在訓練過程中,僅使用(xhat, yhat)。

Mixup方法主要增強了訓練樣本之間的線性表達,增強網(wǎng)絡的泛化能力,不過mixup方法需要較長的時間才能收斂得比較好。

Mixup代碼如下:

for(images, labels) intrain_loader:

l = np.random.beta(mixup_alpha, mixup_alpha)

index = torch.randperm(images.size(0))

images_a, images_b = images, images[index]

labels_a, labels_b = labels, labels[index]

mixed_images = l * images_a + (1- l) * images_b

outputs = model(mixed_images)

loss = l * criterion(outputs, labels_a) + (1- l) * criterion(outputs, labels_b)

acc = l * accuracy(outputs, labels_a)[0] + (1- l) * accuracy(outputs, labels_b)[0]

AdaBound

AdaBound是最近一篇論文[5]中提到的,按照作者的說法,AdaBound會讓你的訓練過程像adam一樣快,并且像SGD一樣好。

如下圖所示,使用AdaBound會收斂速度更快,過程更平滑,結果更好。

20fd3d9a-92a8-11eb-8b86-12bb97331649.jpg

另外,這種方法相對于SGD對超參數(shù)的變化不是那么敏感,也就是說魯棒性更好。但是,針對不同的問題還是需要調節(jié)超參數(shù)的,只是所用的時間可能變少了。

212f4394-92a8-11eb-8b86-12bb97331649.jpg

當然,AdaBound還沒有經(jīng)過普遍的檢驗,也有可能只是對于某些問題效果好。

使用方法如下:安裝AdaBound

pip install adabound

使用AdaBound(和其他PyTorch optimizers用法一致)

optimizer = adabound.AdaBound(model.parameters(), lr=1e-3, final_lr=0.1)

AutoAugment

數(shù)據(jù)增強在圖像分類問題上有很重要的作用,但是增強的方法有很多,并非一股腦地用上所有的方法就是最好的。那么,如何選擇最佳的數(shù)據(jù)增強方法呢?AutoAugment[11]就是一種搜索適合當前問題的數(shù)據(jù)增強方法的方法。該方法創(chuàng)建一個數(shù)據(jù)增強策略的搜索空間,利用搜索算法選取適合特定數(shù)據(jù)集的數(shù)據(jù)增強策略。此外,從一個數(shù)據(jù)集中學到的策略能夠很好地遷移到其它相似的數(shù)據(jù)集上。

AutoAugment在cifar10上的表現(xiàn)如下表,達到了98.52%的準確率。

215e93a6-92a8-11eb-8b86-12bb97331649.jpg

其他經(jīng)典的tricks

常用的正則化方法為

Dropout

L1/L2正則

Batch Normalization

Early stopping

Random cropping

Mirroring

Rotation

Color shifting

PCA color augmentation

。..

其他

Xavier init[12]

。..

參考

[1] Deep Residual Learning for Image Recognition(https://arxiv.org/pdf/1512.03385.pdf)

[2] http://cs231n.github.io/neural-networks-2/

[3] Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour(https://arxiv.org/pdf/1706.02677v2.pdf)

[4] Rethinking the Inception Architecture for Computer Vision(https://arxiv.org/pdf/1512.00567v3.pdf)

[4]Bag of Tricks for Image Classification with Convolutional Neural Networks(https://arxiv.org/pdf/1812.01187.pdf)

[5] Adaptive Gradient Methods with Dynamic Bound of Learning Rate(https://www.luolc.com/publications/adabound/)

[6] Random erasing(https://arxiv.org/pdf/1708.04896v2.pdf)

[7] RICAP(https://arxiv.org/pdf/1811.09030.pdf)

[8] Distilling the Knowledge in a Neural Network(https://arxiv.org/pdf/1503.02531.pdf)

[9] Improved Regularization of Convolutional Neural Networks with Cutout(https://arxiv.org/pdf/1708.04552.pdf)

[10] Mixup: BEYOND EMPIRICAL RISK MINIMIZATION(https://arxiv.org/pdf/1710.09412.pdf)

[11] AutoAugment:Learning Augmentation Policies from Data(https://arxiv.org/pdf/1805.09501.pdf)

[12] Understanding the difficulty of training deep feedforward neural networks(http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf)
編輯:lyn

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:深度學習圖像分類任務中那些不得不看的技巧總結

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    如何深度學習機器視覺的應用場景

    深度學習視覺應用場景大全 工業(yè)制造領域 復雜缺陷檢測:處理傳統(tǒng)算法難以描述的非標準化缺陷模式 非標產品分類:對形狀、顏色、紋理多變的產品進行智能分類 外觀質量評估:基于
    的頭像 發(fā)表于 11-27 10:19 ?27次閱讀

    家門口的科技盛宴!給你三個不得不去CEIC 2025的理由!

    行業(yè)資訊
    腦極體
    發(fā)布于 :2025年11月03日 10:08:30

    深度學習對工業(yè)物聯(lián)網(wǎng)有哪些幫助

    、實施路徑三個維度展開分析: 一、深度學習如何突破工業(yè)物聯(lián)網(wǎng)的技術瓶頸? 1. 非結構化數(shù)據(jù)處理:解鎖“沉睡數(shù)據(jù)”價值 傳統(tǒng)困境 :工業(yè)物聯(lián)網(wǎng)中70%以上的數(shù)據(jù)為非結構化數(shù)據(jù)(如設備振動波形、紅外圖像、日志文本),傳統(tǒng)方法難以
    的頭像 發(fā)表于 08-20 14:56 ?738次閱讀

    如何應對數(shù)據(jù)存儲的隱形危機

    全民健身日前夕,不得不說近年來的健身科技熱浪:站在智能體測儀上,快速生成體脂率、心肺功能等數(shù)據(jù),AI即刻輸出“一人一策”健身方案;同步掃碼將計劃發(fā)到跑步機,實時監(jiān)測配速、心率,形成“測試-計劃-執(zhí)行-反饋”的閉環(huán)。
    的頭像 發(fā)表于 08-12 09:31 ?1647次閱讀

    HarmonyOS:路由跳轉踩坑記

    ,小編不得不開始卷起來。哎,前一段時間剛卷完Flutter。。。。** 問題 ** 目前關于鴻蒙的資料不多,小編也是只能從鴻蒙開發(fā)者官網(wǎng)上看看官方學習視頻,不得不說,視頻講解的真簡單,
    的頭像 發(fā)表于 06-09 15:29 ?345次閱讀

    在友晶LabCloud平臺上使用PipeCNN實現(xiàn)ImageNet圖像分類

    利用深度卷積神經(jīng)網(wǎng)絡(CNN)進行圖像分類是通過使用多個卷積層來從輸入數(shù)據(jù)中提取特征,最后通過分類層做決策來識別出目標物體。
    的頭像 發(fā)表于 04-23 09:42 ?863次閱讀
    在友晶LabCloud平臺上使用PipeCNN實現(xiàn)ImageNet<b class='flag-5'>圖像</b><b class='flag-5'>分類</b>

    基于RV1126開發(fā)板實現(xiàn)自學習圖像分類方案

    在RV1126開發(fā)板上實現(xiàn)自學習:在識別前對物體圖片進行模型學習,訓練完成后通過算法分類得出圖像的模型ID。 方案設計邏輯流程圖,方案代碼分為分為兩個業(yè)務流程,主體代碼負
    的頭像 發(fā)表于 04-21 13:37 ?11次閱讀
    基于RV1126開發(fā)板實現(xiàn)自<b class='flag-5'>學習</b><b class='flag-5'>圖像</b><b class='flag-5'>分類</b>方案

    labview調用yolo目標檢測、分割、分類、obb

    labview調用yolo目標檢測、分割、分類、obb、pose深度學習,支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發(fā)表于 03-31 16:28

    關于滲壓計的這些問題不得不知……

    行業(yè)資訊
    南京峟思工程儀器
    發(fā)布于 :2025年03月20日 17:30:21

    《AI Agent 應用與項目實戰(zhàn)》----- 學習如何開發(fā)視頻應用

    用戶的視頻生成請求和展示生成的視頻結果。 將前端界面與語聚AI平臺中的AI助手進行集成,確保前端能夠正確地調用AI助手的功能并接收返回的視頻結果。 接下來就可以體驗生成的效果了。 不得不說整體體驗下來,使用AI工具創(chuàng)建智能體非常方便,入手也非常簡單。
    發(fā)表于 03-05 19:52

    SLAMTEC Aurora:把深度學習“卷”進機器人日常

    在人工智能和機器人技術飛速發(fā)展的今天,深度學習與SLAM(同步定位與地圖構建)技術的結合,正引領著智能機器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的深度學習
    的頭像 發(fā)表于 02-19 15:49 ?709次閱讀

    軍事應用中深度學習的挑戰(zhàn)與機遇

    人工智能尤其是深度學習技術的最新進展,加速了不同應用領域的創(chuàng)新與發(fā)展。深度學習技術的發(fā)展深刻影響了軍事發(fā)展趨勢,導致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?810次閱讀

    中興通訊40年——五個不得不說的故事

    今年2月7日是中興成立40年。 我寫了《華為通信科技史話》的書(人民郵電出版社),從側面體現(xiàn)了同城兄弟中興通訊的科技發(fā)展過程。 中興歷史上有五個重要的故事。 1、中興在1993年鳳凰涅槃 1985年2月7日,由侯為貴先生牽頭,航天科技771所(當時是691廠)等單位共同出資成立了中外合資企業(yè)——深圳市中興半導體有限公司。 1993年4月,中興半導體公司改組,691廠、深圳廣宇工業(yè)公司與民營科技企業(yè)深圳中興維先通公司共同投資組建深圳市中興新通訊設
    的頭像 發(fā)表于 02-13 16:04 ?5041次閱讀
    中興通訊40年——五個<b class='flag-5'>不得不說</b>的故事

    xgboost在圖像分類中的應用

    和易用性,在各種機器學習任務中得到了廣泛應用,包括分類、回歸和排序問題。在圖像分類領域,盡管深度學習
    的頭像 發(fā)表于 01-19 11:16 ?1542次閱讀

    國產DDR3中文手冊分享

    對于看英文手冊,大家肯定都很苦惱,尤其是那種幾百上千頁的手冊,真是看著就頭大, 不得不說,找個國產DDR的手冊是真難。 雖然比不上協(xié)議原文,但對于理解概念來說,幫助真的挺大。
    的頭像 發(fā)表于 12-12 16:16 ?1645次閱讀
    國產DDR3中文手冊分享