chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

關(guān)于人工智能發(fā)展的三個必要條件深度學習模型,大數(shù)據(jù),算力

jf_f8pIz0xS ? 來源:今日頭條 ? 作者:麥教授說 ? 2021-04-16 15:38 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

2016年,AlphaGo下圍棋戰(zhàn)勝李世乭,大家都認為人工智能的時代到來了。人工智能也是同樣的在一定的歷史契機下,幾個獨立發(fā)展的領(lǐng)域碰巧合并在一起就產(chǎn)生了巨大的推動力。這一波人工智能發(fā)展的三個必要條件是:深度學習模型,大數(shù)據(jù),算力(并行計算)。

深度學習模型

AlphaGo用的機器學習模型是深度學習教父杰佛瑞·辛頓(Geoffrey Hinton)在1986年開始倡導,并在2010年取得重大突破的。

2012年的夏天,64歲的辛頓離開了他在多倫多附近的家,成為了谷歌的一名實習生。他領(lǐng)到了一頂縫有“Noogler”(意思是:谷歌新員工,New Googler的縮寫)字樣的螺旋槳小帽,并參加了主要由80后、90后組成的迎新會。年輕的Nooglers不會認出他來,因為辛頓幾十年來一直在默默研究神經(jīng)網(wǎng)絡(luò)算法。用他的話說,這些年輕人似乎把他當成了“老年低能兒”(有沒有想起羅伯特·德尼羅的電影《實習生》?)。

谷歌之所以要請他,是因為他的深度學習算法模型打破了機器學習幾乎所有領(lǐng)域的天花板。人工智能最近幾年的突破得益于辛頓過去幾十年的研究,他最初在1986年發(fā)表的論文提出讓機器像人類的大腦一樣通過神經(jīng)網(wǎng)絡(luò)來做學習的模型。但是這個模型在取得初步的成功后,就停滯不前了(缺乏另外兩個要素:數(shù)據(jù)和算力)。大多數(shù)的學者都背棄了它,而辛頓沒有。

歷史快進20年,到了2006年,辛頓的團隊取得了突破性進展。被重新命名為“深度學習(deep learning)”的神經(jīng)網(wǎng)絡(luò)開始在每一項關(guān)鍵任務(wù)中擊敗傳統(tǒng)的人工智能,如語音識別、描述圖像和生成自然可讀的句子等等。這些算法支撐著從自動駕駛汽車、虛擬助手到搜索引擎推薦的后端技術(shù)。

近幾年,谷歌、Facebook、微軟、BAT、抖音等所有科技巨頭都開始了深度學習的淘金熱,爭奪世界上極少數(shù)的專家,由數(shù)億風險投資支持的深度學習創(chuàng)業(yè)公司也如雨后春筍般涌現(xiàn)。這些都是因為辛頓的模型改變了人們做人工智能研究和應(yīng)用的范式。

辛頓的曾祖父是喬治·布爾(George Boole),就是就是布爾代數(shù)那個布爾。布爾32歲出版了《邏輯的數(shù)學分析》(The Mathematical Analysis of Logic),把邏輯和代數(shù)之間的關(guān)系建立起來。他39歲時出版了《思維的規(guī)則》 ( The Laws of Thought ),創(chuàng)立了布爾邏輯和布爾代數(shù)。數(shù)理邏輯這個數(shù)學分支奠定了現(xiàn)代計算機的數(shù)學基礎(chǔ)。

布爾的妻子叫瑪麗·艾佛斯特(Mary Everest),珠穆朗瑪峰(Mount Everest)英文名字就是以瑪麗的叔叔,曾任印度大地測量局總測量師的喬治·艾佛斯特(George Everest)而命名的。布爾最小的女兒艾捷爾·麗蓮·伏尼契 (EthelLilian Voynich)寫出了偉大的作品《牛虻》(The Gadfly)。

布爾長女瑪麗·愛倫(Mary Ellen) 這一支更是名人輩出,愛倫和數(shù)學家Charles Howard Hinton結(jié)婚。愛倫的孫女(辛頓的姑姑)Joan Hinton中文名寒春(名字就是Hinton的音譯),是芝加哥大學核物理研究所研究生,是費米(Enrico Fermi)的學生,楊振寧、李政道的同學,也是參與了曼哈頓計劃的極少數(shù)的女科學家之一。

1953年,美國的《真相》雜志報道稱曾參與過美國曼哈頓計劃的女物理學家寒春(Joan Hinton)突然失蹤而后在北京露面。作者(是個后海軍上將)懷疑寒春向中國透露了美國的原子彈秘密,甚至可能協(xié)助中國政府發(fā)展了原子彈計劃。寒春其實是厭惡了原子彈對人類的傷害而選擇逃離到中國,她認為中國最缺的是牛奶,于是選擇幫中國推進科學養(yǎng)牛和農(nóng)業(yè)機械化。她是第一位獲得中國綠卡的外國人,2010年在北京去世。

和寒春一樣,辛頓也厭倦了美國軍方開發(fā)大規(guī)模殺傷武器,1980年代就離開了卡耐基梅隆大學(CMU)到加拿大的多倫多大學專心做人工智能研究。2010年,63歲的他發(fā)表的深度神經(jīng)網(wǎng)絡(luò)AlexNet對機器學習各個領(lǐng)域都起到巨大的推動作用。2018年,他和自己的學生和合作者一起獲得了計算機科學的最高獎“圖靈獎”。

人工智能的大數(shù)據(jù)

辛頓的深度學習算法摧枯拉朽般地推進了機器學習的各個子領(lǐng)域。大眾意識到這個算法的威力是在2012年。

2012年,語音識別還遠未達到完美。這些系統(tǒng)通常使用隱藏馬爾可夫模型(HMM)或高斯混合模型(GMM)來識別語音中的模式。辛頓等人在2012年發(fā)表的一篇開創(chuàng)性論文表明,深度神經(jīng)網(wǎng)絡(luò)的表現(xiàn)明顯優(yōu)于之前的這些模型。

2012年ImageNet大規(guī)模視覺識別挑戰(zhàn)賽(ILSVRC),是將深度神經(jīng)網(wǎng)絡(luò)用于圖像識別的一個決定性時刻。辛頓和他的學生亞歷克斯·克里澤夫斯基(Alex Krizhevsky),還有伊爾亞?蘇茨克維(Ilya Sutskever)共同發(fā)表了一個被稱為“AlexNet”的卷積神經(jīng)網(wǎng)絡(luò)(CNN),將ImageNet視覺識別上現(xiàn)有的錯誤率降低了一半,達到15.3%,比第二名低了10.8個百分點。

為什么之前看不出來這個算法的威力呢?原因很簡單,之前研究者們沒有大規(guī)模的訓練人工智能的數(shù)據(jù)。在小規(guī)模數(shù)據(jù)上,深度學習的算法并沒有很強的優(yōu)勢。

「數(shù)據(jù)規(guī)模和算法性能」

圖中可以看到,傳統(tǒng)的算法會遇到一個瓶頸,數(shù)據(jù)規(guī)模再大也沒有辦法提高了。但是深度學習可以隨著數(shù)據(jù)規(guī)模提升而持續(xù)提高算法的表現(xiàn)。

這個計算機視覺比賽用的大規(guī)模數(shù)據(jù)ImageNet來自于斯坦福大學教授李飛飛的研究。她有很強的連接不同領(lǐng)域之間關(guān)系的洞察力。她的計算機視覺同行們那時在研究計算機感知和解碼圖像的模型,但這些模型的范圍都很有限,他們可能會寫一個算法來識別狗,另一個算法來識別貓。

李飛飛懷疑問題不是出在模型上而是出在數(shù)據(jù)上。如果一個孩子可以通過觀察無數(shù)的物體和場景來學會識別物體,那么計算機也許也可以用類似的方式,通過分析大規(guī)模的各種各樣的圖像和它們之間的關(guān)系來學習。但是這樣就要求訓練模型時,有大量的打好標簽的圖片,告訴計算機圖片里的物體都是什么。在一個有百萬甚至千萬張圖片的數(shù)據(jù)庫中標記每張圖片上所有的物體是一個巨大的體力活。

2007年在普林斯頓大學擔任助理教授的李飛飛提出了她對ImageNet的想法時,很難得到同事們的幫助,因為那時大家只是習慣于用幾百到幾千張圖片的數(shù)據(jù)庫。有人評論說:“如果連一個物體都識別不好,為什么還要識別幾千個、幾萬個物體?”

李飛飛嘗試給普林斯頓的學生支付每小時10美元的工資來打標簽,但進展緩慢。后來有學生跟她提到了亞馬遜人力外包Amazon Mechanical Turk,突然間,她可以用極低的成本雇傭許多人來打標。2009年,李飛飛的團隊集齊了320萬張(后來增加到1500萬張)打過標的圖片,他們發(fā)表了一篇論文,同時還建立了開放的數(shù)據(jù)庫。

起初,這個項目幾乎沒有受到關(guān)注。后來團隊聯(lián)系了次年在歐洲舉行的計算機視覺競賽的組織者,并要求他們允許參賽者使用ImageNet數(shù)據(jù)庫來訓練他們的算法。這就成了ImageNet大規(guī)模視覺識別挑戰(zhàn)賽。

歷年來ImageNet挑戰(zhàn)賽的參賽者在科技界的每個角落都能找到。2010年大賽的第一批獲獎?wù)吆髞碓诠雀琛俣群腿A為擔任了高級職務(wù)。基于2013年ImageNet獲獎算法創(chuàng)建的Clarifai公司后來獲得了4000萬美元的風險投資支持。2014年,牛津大學的兩位研究人員獲得冠軍,他們很快被谷歌搶走,并加入了其收購的DeepMind實驗室。

「ImageNet錯誤率逐年下降」

這個數(shù)據(jù)庫突然激發(fā)了深度學習的潛能,讓人們意識到數(shù)據(jù)的規(guī)模有時比模型的效率更重要,之前人們總是糾結(jié)在小規(guī)模數(shù)據(jù)上一點一點的推進算法準確性,而ImageNet和AlexNet讓大家看到了數(shù)據(jù)規(guī)模能給人工智能帶來的變革。到了2017年,也就是比賽的最后一年,計算機識別物體的錯誤率已經(jīng)從2012年的15%降到了3%以下。2020年,很多算法都可以把錯誤率降低到2%以下了。

算力(并行計算)

所謂深度神經(jīng)網(wǎng)絡(luò),說的是神經(jīng)網(wǎng)絡(luò)有好多層,每一層又有好多節(jié)點,為了計算最優(yōu)的模型,要做非常大量的計算。這個方法以前不流行的原因就是它計算量太大了。在處理小規(guī)模數(shù)據(jù)時,深度學習的正確率并不比別的簡單模型高,但是計算量大很多,于是并不討喜。在2010年前后,隨著并行計算越來越容易做了,這個計算量的瓶頸突然就變得不那么重要了,于是人工智能的三個必要條件就湊齊了。

CPU對比GPU

并行計算可以大幅加快計算的速度。傳統(tǒng)的有十幾個內(nèi)核的CPU(中央處理單元)可以同時處理十幾個互相獨立的運算工作。而GPU(圖形處理單元)本來是用來給圖形顯示加速的,當需要計算復雜的圖形的光影時,可以通過GPU上千的內(nèi)核來做并行處理,從而大幅加快計算速度。

GPU并不適合所有的加速場景,我們遇到的很多問題是串行的,就是一個計算結(jié)束之后得到了結(jié)果才可以進入下一個計算,這樣的場景還是CPU比較高效率。但是有些場景,各個計算之間相互獨立,并不需要等待,而深度學習的算法恰恰就符合了這個特性。有人做過一個簡單的對比,CPU就和古代軍隊里的將軍一樣,適合遇到串行問題時單打獨斗;但是GPU就像士兵一樣,適合在遇到并行問題時一擁而上。深度學習算法是個并行計算可以解決的問題,于是一拍即合,GPU并行計算的算力被大量應(yīng)用于人工智能需要加速的場景。

制作GPU芯片的英偉達公司的股價也一飛沖天,從2016年到現(xiàn)在股價已經(jīng)翻了20倍。之后人們?yōu)槿斯ぶ悄苡嬎阌謱iT研制了更好的協(xié)處理器,如TPU 或 NPU,處理AI算法的效率更高。

GPU的重要性當然也和區(qū)塊鏈、比特幣的發(fā)展有關(guān)。區(qū)塊鏈里面的Proof of Work就需要很多相互獨立的計算,也是GPU可以大展身手的領(lǐng)域。
編輯:lyn

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1812

    文章

    49529

    瀏覽量

    259097
  • 大數(shù)據(jù)
    +關(guān)注

    關(guān)注

    64

    文章

    8998

    瀏覽量

    142604
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5587

    瀏覽量

    123737
  • 算力
    +關(guān)注

    關(guān)注

    2

    文章

    1333

    瀏覽量

    16470
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    利用超微型 Neuton ML 模型解鎖 SoC 邊緣人工智能

    應(yīng)用。 為什么選擇 Neuton 作為開發(fā)人員,在產(chǎn)品中使用邊緣人工智能的兩最大障礙是: ML 模型對于您所選微控制器的內(nèi)存來說太大。 創(chuàng)建自定義 ML 模型本質(zhì)上是一
    發(fā)表于 08-31 20:54

    挖到寶了!人工智能綜合實驗箱,高校新工科的寶藏神器

    應(yīng)用場景。從數(shù)據(jù)采集,到模型推理,都能完整且自如地參與,輕松解鎖人工智能全流程實訓,讓你深度體驗AI技術(shù)的魅力 。 四、九門課程全覆蓋,滿足多元學習
    發(fā)表于 08-07 14:30

    挖到寶了!比鄰星人工智能綜合實驗箱,高校新工科的寶藏神器!

    應(yīng)用場景。從數(shù)據(jù)采集,到模型推理,都能完整且自如地參與,輕松解鎖人工智能全流程實訓,讓你深度體驗AI技術(shù)的魅力 。 四、九門課程全覆蓋,滿足多元學習
    發(fā)表于 08-07 14:23

    超小型Neuton機器學習模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機器 學習模型更易于使用。它創(chuàng)建的模型比競爭對手的框架小10 倍,速度也快10 倍,甚至可以在最先進的邊緣設(shè)備上進行人工智能處理。在這篇博文
    發(fā)表于 07-31 11:38

    有方科技助力人工智能產(chǎn)業(yè)蓬勃發(fā)展

    當前,人工智能產(chǎn)業(yè)正在蓬勃發(fā)展,AI模型的訓練和推理正如火如荼地進行,面對這一趨勢,有方科技正積極順應(yīng)物聯(lián)網(wǎng)與大數(shù)據(jù)、云計算和人工智能
    的頭像 發(fā)表于 07-23 17:30 ?1029次閱讀

    最新人工智能硬件培訓AI 基礎(chǔ)入門學習課程參考2025版(大模型篇)

    人工智能模型重塑教育與社會發(fā)展的當下,無論是探索未來職業(yè)方向,還是更新技術(shù)儲備,掌握大模型知識都已成為新時代的必修課。從職場上輔助工作的智能
    發(fā)表于 07-04 11:10

    芯片的生態(tài)突圍與革命

    電子發(fā)燒友網(wǎng)報道(文 / 李彎彎)大芯片,即具備強大計算能力的集成電路芯片,主要應(yīng)用于高性能計算(HPC)、人工智能(AI)、數(shù)據(jù)中心、自動駕駛等需要海量
    的頭像 發(fā)表于 04-13 00:02 ?2387次閱讀

    【「芯片通識課:一本書讀懂芯片技術(shù)」閱讀體驗】從deepseek看今天芯片發(fā)展

    的: 神經(jīng)網(wǎng)絡(luò)處理器(NPU)是一種模仿人腦神經(jīng)網(wǎng)絡(luò)的電路系統(tǒng),是實現(xiàn)人工智能中神經(jīng)網(wǎng)絡(luò)計算的專用處理器,主要用于人工智能深度學習模型的加速
    發(fā)表于 04-02 17:25

    信而泰CCL仿真:解鎖AI極限,智中心網(wǎng)絡(luò)性能躍升之道

    中心RoCE網(wǎng)絡(luò)提供精準評估方案,助力企業(yè)突破瓶頸,釋放AI澎湃動力! 什么是智中心 智中心(AIDC,Artificial Intelligence Data Center)
    的頭像 發(fā)表于 02-24 17:34 ?836次閱讀
    信而泰CCL仿真:解鎖AI<b class='flag-5'>算</b><b class='flag-5'>力</b>極限,智<b class='flag-5'>算</b>中心網(wǎng)絡(luò)性能躍升之道

    達實智能助力打造綠色智慧中心

    隨著人工智能、大數(shù)據(jù)、云計算等新興技術(shù)的飛速發(fā)展,全球?qū)?b class='flag-5'>算的需求正呈現(xiàn)爆發(fā)式增長。作為承載這些技術(shù)運行的重要基礎(chǔ)設(shè)施,
    的頭像 發(fā)表于 02-24 15:52 ?782次閱讀

    Deepseek引發(fā)變革 《2025中國人工智能計算發(fā)展評估報告》發(fā)布

    北京2025年2月14日?/美通社/ -- 2月13日,國際數(shù)據(jù)公司(IDC)與浪潮信息聯(lián)合發(fā)布《2025年中國人工智能計算發(fā)展評估報告》(簡稱《報告》)?!秷蟾妗分赋?,大
    的頭像 發(fā)表于 02-14 16:08 ?673次閱讀
    Deepseek引發(fā)<b class='flag-5'>算</b><b class='flag-5'>力</b>變革 《2025中國<b class='flag-5'>人工智能</b>計算<b class='flag-5'>力</b><b class='flag-5'>發(fā)展</b>評估報告》發(fā)布

    中心的如何衡量?

    作為當下科技發(fā)展的重要基礎(chǔ)設(shè)施,其的衡量關(guān)乎其能否高效支撐人工智能、大數(shù)據(jù)分析等智能應(yīng)用的運
    的頭像 發(fā)表于 01-16 14:03 ?3665次閱讀
    <b class='flag-5'>算</b>智<b class='flag-5'>算</b>中心的<b class='flag-5'>算</b><b class='flag-5'>力</b>如何衡量?

    嵌入式和人工智能究竟是什么關(guān)系?

    人工智能的結(jié)合,無疑是科技發(fā)展中的一場革命。在人工智能硬件加速中,嵌入式系統(tǒng)以其獨特的優(yōu)勢和重要性,發(fā)揮著不可或缺的作用。通過深度學習和神
    發(fā)表于 11-14 16:39

    動態(tài)無功補償?shù)?b class='flag-5'>三個必要條件

    重要性愈發(fā)凸顯。本文將探討動態(tài)無功補償?shù)?b class='flag-5'>三個關(guān)鍵條件,以幫助電力系統(tǒng)運營者更好地應(yīng)對復雜的電力需求和供給問題。 動態(tài)無功補償?shù)?b class='flag-5'>三個必要條件包括: 實時監(jiān)測電網(wǎng)功率因數(shù)和電壓波動 :動態(tài)
    的頭像 發(fā)表于 11-12 14:05 ?880次閱讀
    動態(tài)無功補償?shù)?b class='flag-5'>三個</b><b class='flag-5'>必要條件</b>

    人工智能云計算大數(shù)據(jù)者關(guān)系

    人工智能、云計算與大數(shù)據(jù)之間的關(guān)系是緊密相連、相互促進的。大數(shù)據(jù)人工智能提供了豐富的訓練資源和驗證環(huán)境;云計算為大數(shù)據(jù)
    的頭像 發(fā)表于 11-06 10:03 ?1360次閱讀