chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

關于深度神經(jīng)網(wǎng)絡的個性化推薦系統(tǒng)研究

電子工程師 ? 來源:電子技術應用第1期 ? 作者:字云飛 李業(yè)麗 孫 ? 2021-04-26 18:08 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

摘要:深度神經(jīng)網(wǎng)絡由于結構類似于生物神經(jīng)網(wǎng)絡,因此擁有高效、精準抽取信息深層隱含特征的能力和能夠學習多層的抽象特征表示,且能夠對跨域、多源、異質的內容信息進行學習等優(yōu)勢。提出了一種基于多用戶-項目結合深度神經(jīng)網(wǎng)絡抽取特征、自學習等優(yōu)勢實現(xiàn)信息個性化推薦的模型,該模型通過對輸入多源異構數(shù)據(jù)特征進行深度神經(jīng)網(wǎng)絡學習、抽取,再融合協(xié)同過濾中的廣泛個性化產(chǎn)生候選集。

然后通過二次模型學習產(chǎn)生排序集,實現(xiàn)精準、實時、個性化推薦。通過真實數(shù)據(jù)集對模型評估實驗,實驗結果表明,該模型能夠很好地學習、抽取用戶隱特征,并且能夠一定程度上解決傳統(tǒng)推薦系統(tǒng)稀疏性、新物品等問題,同時實現(xiàn)了更加精準、實時、個性化的推薦。

0 引言

近幾年,深度學習人工智能、機器學習中取得了飛躍式的突破,特別是在語音識別和圖像識別等領域[1-3]。其中,深度神經(jīng)網(wǎng)絡由于結構類似于生物神經(jīng)網(wǎng)絡,因此擁有高效、精準抽取信息深層隱含特征的能力和能夠學習多層的抽象特征表示,且能夠對跨域、多源、異質的內容信息進行學習等優(yōu)勢,可以一定程度上處理推薦系統(tǒng)稀疏性、新物品、可擴張性等問題,這為推薦系統(tǒng)解決固有問題帶來了新的機遇。

本文提出了基于深度神經(jīng)網(wǎng)絡結合多用戶-項目、協(xié)同過濾的推薦模型(Multi-View-Collaborative Filtering integrating Deep Neural Network,MV-CFiDNN)[4-6],基于深度神經(jīng)網(wǎng)絡理論,提取用戶、項目信息的深層隱含特征并自學習、優(yōu)化提取模型,最后結合多用戶-項目、協(xié)同過濾(Collaborative Filtering)提供廣泛的個性化推薦。

1 深度神經(jīng)網(wǎng)絡推薦模型

基于深度學習的推薦系統(tǒng)通過將用戶和項目的各類原始數(shù)據(jù)信息提供給輸入層,在隱含層通過神經(jīng)網(wǎng)絡學習模型進行用戶、項目的隱特征學習及抽取,最后通過學習隱表示實現(xiàn)用戶、項目推薦[7-8]?;谏疃壬窠?jīng)網(wǎng)絡框架的兩次自學習并結合協(xié)同過濾的CFiDNN框架如圖1所示。CFiDNN框架兩大核心為:候選生成網(wǎng)絡融合協(xié)同過濾與排名網(wǎng)絡結合協(xié)同過濾。

6368280191179453139748189.gif

其中,候選集產(chǎn)生以用戶在瀏覽歷史記錄中的提取特征作為輸入信息,然后基于多源數(shù)據(jù)庫檢索到與用戶相關的一個數(shù)據(jù)集,這一數(shù)據(jù)集就是候選集。這部分候選集通過協(xié)同過濾(CF)實現(xiàn)廣泛個性化。再通過用戶、項目的多類特征源學習計算相似性,實現(xiàn)最小排名集,最后基于協(xié)同過濾實現(xiàn)推薦。

1.1 候選集生成模塊

對于候選集生成,首先,將用戶瀏覽及搜索項目等歷史記錄信息映射為向量,然后對其求平均值獲取定長表示;并且,輸入用戶地理信息特征值優(yōu)化個性化推薦效果,二值性和連續(xù)性特征值通過歸一化得到[0,1]范圍。其次,把所有輸入特征值拼接到同一個向量,并且把拼接后的向量輸予激活函數(shù)處理。最后,通過神經(jīng)網(wǎng)絡訓練輸給Softmax進行分類,通過訓練的特征與源項目進行相似度計算,獲取相似度最高的N個項目作為候選模塊中的候選集,圖2為候選生成結構圖。

6368280193824759606409352.gif

基于生成的候選集協(xié)同過濾提供廣泛的個性化,組合基于用戶-項目相關度評價實現(xiàn)精準、實時、個性化推薦。

候選集生成部分是基于多源異構數(shù)據(jù)庫中學習選擇與用戶相關度較高的項目,對于預測用戶U,其瀏覽某一個信息的概率為:

6368280196554441123475868.gif

其中,U是用戶特征值,V表示多源異構數(shù)據(jù)庫,vi表示數(shù)據(jù)庫中第i個項目的特征值,U與vi向量擁有相等長度,它兩通過點積在隱層全連接實現(xiàn)。

1.2 排序生成模塊

排序生成結構與候選生成結構類似,區(qū)別在于排序生成是對候選生成集升級細致分類排序。與傳統(tǒng)排序抽取特征值類似,神經(jīng)網(wǎng)絡排序也是通過拼接大量用戶、項目相關特征值(文本ID、瀏覽時長等)。特征值的處理與候選生成類似,都基于向量化,區(qū)別在于排序生成網(wǎng)絡最后通過加權邏輯回歸訓練,給前期產(chǎn)生的候選集再評分,評分較高的K個項目返回給用戶或通過協(xié)同過濾實現(xiàn)個性化推薦[8-10]。圖3為排序生成結構圖。

6368280200296619596060058.gif

設定部分Softmax分類過程:首先,對于候選生成集或排序生成列表的訓練過程,通過對負樣本類別采用實際類別計算將數(shù)量減小到數(shù)千;其次,在推薦階段,不計Softmax歸一化,將項目評分轉化為點積空間的最近鄰尋找或協(xié)同過濾根據(jù)相關度計算;最后,選取與用戶U相關度最高的K項作為候選集或排序列表,然后通過協(xié)同過濾個性化推薦,把信息推薦給用戶。

1.3 多用戶—項目模型

基于多用戶、多項目的多源異構特征結合兩次深度神經(jīng)網(wǎng)絡學習,從而實現(xiàn)個性化推薦。其實現(xiàn)思想為:首先,將原始特征值向量化后映射為用戶、項目兩個通道;然后利用深度神經(jīng)網(wǎng)絡模型把用戶、項目信息向量映射到一個隱空間;最后,通過評估相似度(如余弦相似度法)把隱空間的用戶、項目進行相關度等排名、匹配,從而實現(xiàn)精準、個性化推薦。圖4為多用戶-項目DNN(Deep Neural Network)模型結構[11-12]。

6368280206875933185811440.gif

在用戶視角,利用其瀏覽歷史、搜索(Search tokens)、位置信息、二值性(登錄與否、性別)和連續(xù)性(年齡)、觀看時長等作為源特征值輸入xu,然后通過深度神經(jīng)網(wǎng)絡學習模型學習輸出隱表示yu。在項目視角,利用項目的描述、標簽、類型等作為源特征值輸入xi,通過深度神經(jīng)網(wǎng)絡學習模型學習輸出隱表示yi。
其中模型擁有多個用戶、項目,分別為m、N。用戶視角DNN模型為fu(xu,wu),第i個項目視角DNN模型為fi(xi,wi)。若擁有M個樣本{(xu,j,xa,j)},0≤j≤M,(xu,j,xa,j)是用戶u與項目a的交互,利用用戶、項目的擬合交互記錄進行調參學習:

6368280209539101608675854.gif

通過模型訓練、學習之后獲得的用戶隱表示yu與項目隱表示yi,利用在隱空間中計算用戶與項目的相關度、排名,選擇相關度排序較高的k項目以及源數(shù)據(jù)庫協(xié)同過濾實現(xiàn)精準、個性化推薦。

1.4 特征值向量化

特征值向量化是通過詞組嵌入,將特制文本映射到w維空間向量。首先,把用戶、項目所有相關聯(lián)特征值分別合并,并對特征值量化為評分數(shù)據(jù)然后求其平均值,即對多源異構原始數(shù)據(jù)進行評分式數(shù)據(jù)處理及歸一化。

(1)用戶特征數(shù)據(jù)為:

6368280239626207863540807.gif

6368280241284014346763766.gif

1.5 全連接層

全連接層(隱層)輸入數(shù)據(jù)為用戶、項目源特征值向量化后的值,設隱含層共m個神經(jīng)元,通過隱含層ReLU激活函數(shù)處理后,獲得向量ui,就是用戶useri隱特征值,同理,項目itemj的隱特征值向量為vj,計算過程如下:

6368280246213875338525932.gif

1.6 矩陣分解

6368280248305000174734569.gif

最后,利用Adam深度學習優(yōu)化方式對預測與真實評分進行擬合[13],對于一些擁有評分的項目,使預測最大可能接近真實,由此學習推薦,對新物品實現(xiàn)個性化推薦(未評分項目預測真實評分無限接近預測值)。

6368280250241281158428736.gif

2 實驗仿真及分析

2.1 實驗環(huán)境

算法性能分析的實驗環(huán)境以Windows Server2012 R2操作系統(tǒng)為實驗支撐,相關配置為:Intel Xeon Silver 4116 CPU處理器,編程語言Python,128 GB內存,雙GPU。編譯環(huán)境在Anaconda的Jupyter Notebook中實現(xiàn)并采用MATLAB進行仿真。

2.2 數(shù)據(jù)集合

本文通過2個真實、實時數(shù)據(jù)集,對深度神經(jīng)網(wǎng)絡融合協(xié)同過濾推薦模型進行評估,數(shù)據(jù)集分別為Amazon Movies and TV(AMT)評論評分與Amazon Clothing(AC)視頻評論、評分。數(shù)據(jù)包括用戶ID、物品ID及用戶評論、評分。評分值為1~5,值越大用戶喜好度越高。同時,實驗數(shù)據(jù)按需求進行訓練集TrainSet與測驗集TestSet劃分,且二者沒有交集。

2.3 評價標準

本文提出的深度神經(jīng)網(wǎng)絡融合協(xié)同過濾推薦模型通過用戶與項目的各類歷史記錄中抽取隱特征,然后對特征值進行學習預判、排序。因此本文應用均方根誤差(RMSE)作為評價此模型的指標,通過學習特征模型與真實特征計算偏差,并求平方,然后與預測數(shù)據(jù)量N做比值平方根,計算公式如下:

6368280254644490511165444.gif

2.4 實驗對比

實驗通過3個有效模型進行比較,分別為Probabilistic Matrix Factorization(PMF)、LibMF和DNNMF。

2.5 執(zhí)行時間對比分析

深度神經(jīng)網(wǎng)絡(DNN)推薦算法與傳統(tǒng)協(xié)同過濾(CF)運行時間對比:實驗處理數(shù)據(jù)為AMT、AC真實數(shù)據(jù),大小為1.88 GB。深度神經(jīng)網(wǎng)絡輸入節(jié)點為1 024個,隱含層18個,輸出節(jié)點1 024個,Spark集群節(jié)點為3,比較深度神經(jīng)網(wǎng)絡訓練與傳統(tǒng)協(xié)同過濾處理數(shù)據(jù)集的耗時。實驗結果如圖5所示,其中user表示用戶測試數(shù)據(jù)集耗時,item表示商品測試數(shù)據(jù)集耗時。顯然,DNN執(zhí)行效率更高。

6368280257433859417838196.gif

2.6 實驗結果與分析

實驗在2個真實數(shù)據(jù)集下通過本文提出的MV-CFi-DNN模型進行計算評估,同時用RMSE來對模型進行評估預測,在相同實驗環(huán)境與同一數(shù)據(jù)前提下,將MV-CFi-DNN與PMF、LibMF做比較分析。

參數(shù)設置為:用戶、項目特征值權重分別為α=1,β=0.5,MV-CFiDNN模型學習率為lr=0.000 65,用戶、項目隱特征正則化為λuser=λitem=λ,深度神經(jīng)網(wǎng)絡神經(jīng)元數(shù)為1 026個。

為了將MV-CFiDNN模型與PMF、LibMF模型對比,把2個真實數(shù)據(jù)集隨機分為80%的TrainSet與20%的TestSet,且兩者沒有交集,同時把TestSet中的20%數(shù)據(jù)集隨機用于驗證,用來調整模型參數(shù)。

從圖6可知,通過在2個真實數(shù)據(jù)集中測試后,PMF、LibMF的RMSE值相差不大,但與MV-CFiDNN模型的RMSE值有一定差異,表明深度神經(jīng)網(wǎng)絡融合多用戶-項目、協(xié)同過濾模型對于特征值抽取有很好效果。通過實驗結果可以看出,本文提出的深度神經(jīng)網(wǎng)絡融合多用戶-項目協(xié)同過濾模型(MV-CFiDNN)的RMSE值與PMF、LibMF模型比較,都有下降,說明MV-CFiDNN模型能夠解決傳統(tǒng)算法模型的稀疏性、新物品等問題。

6368280265737090199814601.gif

3 結束語

本文通過深度神經(jīng)網(wǎng)絡融合協(xié)同過濾,提出了MV-CFiDNN模型,該模型首先對原數(shù)據(jù)庫進行深度神經(jīng)網(wǎng)絡結合協(xié)同過濾個性化進行學習、提取特征值然后生成候選集,再對候選集進行二次學習、提取等生成排序集。產(chǎn)生候選集與排序集過程的深度神經(jīng)網(wǎng)絡學習方法包括輸入層、隱含層及輸出層,其中輸入層是對輸入特征值進行向量化后與用戶、項目權重內積傳輸給隱含層,隱含層根據(jù)接收到的值進行調參、重置等神經(jīng)網(wǎng)絡學習,然后學習、提取的特征值傳遞給輸出層。通過計算得到預測值與真實值擬合。

未來研究可以通過多種神經(jīng)網(wǎng)絡結合更多基礎推薦模型,以便使系統(tǒng)實現(xiàn)智能且符合人為思想的精準、個性化推薦。

參考文獻

[1] PENG Y,ZHU W,ZHAO Y,et al.Cross-media analysis and reasoning:advances and directions[J].Frontiers of Information Technology & Electronic Engineering,2017,18(1):44-57.

[2] COVINGTON P,ADAMS J,SARGIN E.Deep neural networks for youtube recommendations[C].Proceedings of the10th ACM Conference on Recommender Systems.ACM,2016:191-198.

[3] LI P,WANG Z,REN Z,et al.Neural rating regression with abstractive tips generation for recommendation[Z].2017.

[4] SONG Y,ELKAHKY A M,HE X.Multi-rate deep learning for temporal recommendation[C].Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2016:909-912.

[5] VASILE F,SMIRNOVA E,CONNEAU A.Meta-Prod2Vec:product embeddings using side-information for recommendation[C].ACM Conference on Recommender Systems.ACM,2016:225-232.

[6] HSIEH C K,YANG L,CUI Y,et al.Collaborative metric learning[C].Proceedings of the 26th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:193-201.

[7] WANG X,HE X,NIE L,et al.Item silk road: recommending items from information domains to social users[Z].2017.

[8] ROY S,GUNTUKU S C.Latent factor representations for cold-start video recommendation[C].Proceedings of the 10th ACM Conference on Recommender Systems.ACM,2016:99-106.

[9] ZHENG L,NOROOZI V,YU P S.Joint deep modeling of users and items using reviews for recommendation[C].Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.ACM,2017:425-434.

[10] EBESU T,F(xiàn)ANG Y.Neural citation network for context-aware citation recommendation[C].International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2017:1093-1096.

[11] Zhang Qi,Wang Jiawen,Huang Haoran,et al.Hashtag recommendation for multimodal microblog using co-attention network[C].IJCAI2017,2017.

[12] WEI J,HE J,CHEN K,et al.Collaborative filtering and deep learning based recommendation system for cold start items[J].Expert Systems with Applications,2017,69:29-39.

[13] WANG S,WANG Y,TANG J,et al.What your images reveal: exploiting visual contents for point-of-interest recommendation[C].Proceedings of the 26th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:391-400.

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 語音識別
    +關注

    關注

    39

    文章

    1782

    瀏覽量

    114249
  • 人工智能
    +關注

    關注

    1807

    文章

    49029

    瀏覽量

    249607
  • 機器學習
    +關注

    關注

    66

    文章

    8503

    瀏覽量

    134636
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    利用API提升電商用戶體驗:個性化推薦系統(tǒng)

    ? 在當今競爭激烈的電商環(huán)境中,個性化推薦系統(tǒng)已成為提升用戶粘性和轉化率的核心工具。通過API(Application Programming Interface)集成,電商平臺能夠高效接入先進
    的頭像 發(fā)表于 07-14 14:45 ?67次閱讀
    利用API提升電商用戶體驗:<b class='flag-5'>個性化</b>推薦<b class='flag-5'>系統(tǒng)</b>

    無刷電機小波神經(jīng)網(wǎng)絡轉子位置檢測方法的研究

    MATLAB/SIMULINK工具對該方法進行驗證,實驗結果表明該方法在全程速度下效果良好。 純分享帖,點擊下方附件免費獲取完整資料~~~ *附件:無刷電機小波神經(jīng)網(wǎng)絡轉子位置檢測方法的研究.pdf
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡RAS在異步電機轉速估計中的仿真研究

    ,在一定程度上擴展了轉速估計范圍。 純分享帖,需要者可點擊附件免費獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡RAS在異步電機轉速估計中的仿真研究.pdf【免責聲明】本文系網(wǎng)絡轉載,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權
    發(fā)表于 06-16 21:54

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    多層。 每一層都由若干個神經(jīng)元構成,神經(jīng)元之間通過權重連接。信號在神經(jīng)網(wǎng)絡中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(CNN) : CNN主要由卷積層、池
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    BP神經(jīng)網(wǎng)絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經(jīng)網(wǎng)絡的有效方法。以下是關于BP神經(jīng)網(wǎng)絡的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?775次閱讀

    BP神經(jīng)網(wǎng)絡深度學習的關系

    ),是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法進行訓練。BP神經(jīng)網(wǎng)絡由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網(wǎng)絡權重,目的是最小
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡的構建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經(jīng)網(wǎng)絡。 神經(jīng)網(wǎng)絡由多個神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?532次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    所擬合的數(shù)學模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設計的。然而,數(shù)據(jù)科學中常用的神經(jīng)網(wǎng)絡作為大腦模型已經(jīng)過時,現(xiàn)在它們只是能夠在某些應用中提供最先進性能的機器學習模型。近年來,由于
    的頭像 發(fā)表于 01-09 10:24 ?1209次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發(fā)展,多種實現(xiàn)工具和框架應運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?672次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結構差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡作為深度學習的一個分支,因其在圖像處理任務中的卓越性能而受到廣泛關注。 卷積神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 11-15 14:52 ?847次閱讀

    Moku人工神經(jīng)網(wǎng)絡101

    不熟悉神經(jīng)網(wǎng)絡的基礎知識,或者想了解神經(jīng)網(wǎng)絡如何優(yōu)化加速實驗研究,請繼續(xù)閱讀,探索基于深度學習的現(xiàn)代智能實驗的廣闊應用前景。什么是
    的頭像 發(fā)表于 11-01 08:06 ?667次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>101

    關于卷積神經(jīng)網(wǎng)絡,這些概念你厘清了么~

    取特征的強大工具,例如識別音頻信號或圖像信號中的復雜模式就是其應用之一。 1、什么是卷積神經(jīng)網(wǎng)絡? 神經(jīng)網(wǎng)絡是一種由神經(jīng)元組成的系統(tǒng)或結構,它使AI能夠更好地理解數(shù)據(jù),進而解決復雜問
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡算法中,模型的訓練離不開大量的數(shù)據(jù)集,數(shù)據(jù)集用于
    發(fā)表于 10-10 09:28

    FPGA在深度神經(jīng)網(wǎng)絡中的應用

    隨著人工智能技術的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領域取得了顯著成果。然而,傳統(tǒng)的深度神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-24 10:42 ?1209次閱讀