chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

特斯拉的圖像識別原理是什么?

深圳市汽車電子行業(yè)協(xié)會 ? 來源:阿寶1990 ? 作者:阿寶1990 ? 2021-06-26 14:04 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

特斯拉利用8個攝像頭來識別現(xiàn)實世界中的物體。攝像頭獲取的圖像包括行人、其他車輛、動物或障礙物,這不僅對特斯拉車輛駕駛員的安全很重要,對其他人也很重要。專利稱,重要的是,攝像頭能夠及時準確地識別這些物體。

785551ea-d5b5-11eb-9e57-12bb97331649.png

特斯拉專利框

特斯拉專利演示

算法的代碼層面來說,特斯拉把它們的深度學習網絡稱為HydraNet。其中,基礎算法代碼是共享的,整個HydraNet包含48個不同的神經網絡,通過這48個神經網絡,就能輸出1000個不同的預測張量。理論上來說,特斯拉的這個超級網絡,能同時檢測1000種物體。完成這些運算并不簡單,特斯拉已經耗費了7萬個GPU小時進行深度學習模型訓練。

雖然工作量很大,但由于大部分工作由機器承擔,特斯拉的人工智能團隊僅由幾十人組成,與其他自動駕駛公司數百人甚至數千人的規(guī)模相比,確實規(guī)模不大。

完成2D的圖像還不算牛掰的,畢竟云端有超級計算機可以去訓練,本地的芯片也是自己開發(fā)的,可以很好的匹配算法,特斯拉真正牛掰的地方,通過視覺完成3D的深度信息,并可以通過視覺建立高精度地圖,完成一些底下停車場的附件駕駛場景。

特斯拉全車共配備了8個攝像頭,一個毫米波雷達和12個超聲波雷達,監(jiān)測外部環(huán)境,向自動駕駛電腦實時傳送信息。

特斯拉車外傳感器

簡單來看,特斯拉的攝像頭、毫米波雷達、超聲波雷達以及慣性測量單元記錄下當前車輛所處的環(huán)境數據,并將數據發(fā)送給特斯拉的自動駕駛電腦。自動駕駛電腦在進行算法的計算之后,將速度和方向信息傳遞給轉向舵以及加速、制動踏板,實現(xiàn)對車輛的控制。

不過,在日常行駛過程中,攝像頭作為傳感器捕捉的內容都是二維圖像,并沒有深度信息。

也就是說,雖然二維圖像已經可以區(qū)分公路和路旁的人行道,但并不知道現(xiàn)在車輛距離“馬路牙子”還有多遠。由于缺失這樣一個重要信息,自動駕駛的運算可能并不準確,操作可能出錯。因此,捕捉或者建立一個三維的圖景很有必要。

特斯拉使用三目相機的,它可以通過比較兩個攝像頭圖像的差異判斷物體的遠近,獲得物體的深度信息。通過中央處理器對輸入圖像進行感知、分割、檢測、跟蹤等操作,輸出給導航網絡端進行語義建圖及匹配定位,同時通過目標識別形成相應的ADAS系統(tǒng)目標屬性。

特斯拉還有更厲害的地方,那就是算法可以預測流媒體視頻中每一個像素的深度信息。也就是說,只要算法足夠好,流媒體視頻更加清晰,特斯拉的視覺傳感器所捕捉的深度信息甚至可以超過激光雷達。

在實際的自動駕駛應用中,泊車入位和智能召喚兩個使用場景下就能充分利用這套算法。在停車場行駛時,車輛之間的距離很小,即使是駕駛員駕駛,稍不留神也很容易出現(xiàn)刮蹭事故。對于機器來說,停車場場景的行駛更加困難。在預測到深度信息之后,車輛可以在超聲波雷達的輔助之下,快速完成對周圍環(huán)境的識別,車輛泊車就會更加順利。

在完成深度信息的預測之后,這部分信息會顯示在車機上,同時也會直接參與控制轉向、加速、制動等駕駛動作。不過,轉向、加速、制動這些駕駛策略沒有固定的規(guī)則,有一定靈活性。因此,自動駕駛的駕駛策略沒有最佳,只有更好。

怎么提高神經網絡的算法效率:

為什么這么多廠家只有百度敢挑戰(zhàn)視覺為主的輔助駕駛方案,不使用激光雷達,其中很大一個原因就是神經網絡算法相當耗費芯片算力和內存資源,本地端的芯片要算力足夠強大,對于神經網絡的算法要有優(yōu)化。

對于神經網絡來說,其實很多的連接并不是一定要存在的,也就是說我去掉一些連接,可能壓縮后的網絡精度相比壓縮之前并沒有太大的變化。基于這樣的理念,很多剪枝的方案也被提了出來,也確實從壓縮的角度帶來了很大效果提升。

需要特別提出的是,大家從圖中可以看到,深度學習神經網絡包括卷積層和全連接層兩大塊,剪枝對全連接層的壓縮效率是最大的。下面柱狀圖的藍色部分就是壓縮之后的系數占比,從中可以看到剪枝對全連接層的壓縮是最大的,而對卷積層的壓縮效果相比全連接層則差了很多。

所以這也是為什么,在語音的加速上很容易用到剪枝的一些方案,但是在機器視覺等需要大量卷積層的應用中剪枝效果并不理想。

對于整個Deep Learning網絡來說,每個權重系數是不是一定要浮點的,定點是否就能滿足?定點是不是一定要32位的?很多人提出8位甚至1位的定點系數也能達到很不錯的效果,這樣的話從系數壓縮來看就會有非常大的效果。從下面三張人臉識別的紅點和綠點的對比,就可以看到其實8位定點系數在很多情況下已經非常適用了,和32位定點系數相比并沒有太大的變化。所以,從這個角度來說,權重系數的壓縮也會帶來網絡模型的壓縮,從而帶來計算的加速。

這些都需要非常資深的軟件算法團隊去優(yōu)化,同時需要懂得底層芯片的資源情況,而百度在人工算法這方面非常具有優(yōu)勢,所以有勇氣去挑戰(zhàn)視覺為主的自動駕駛 Apollo Lite方案。

百度表示,攝像頭是相對成熟的傳感器,除具備輕巧低成本和符合車規(guī)的優(yōu)勢外,高分辨率高幀率(成像頻率)的成像技術發(fā)展趨勢意味著圖像內蘊含的環(huán)境信息更豐富,同時視頻數據也和人眼感知的真實世界最為相似,但和三維點云數據相比,二維圖像中的信息更難挖掘,需要設計更強大的算法、大量數據的積累和更長期的研發(fā)投入。

責任編輯:lq6

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 攝像頭
    +關注

    關注

    61

    文章

    5027

    瀏覽量

    101657
  • 特斯拉
    +關注

    關注

    66

    文章

    6391

    瀏覽量

    130720

原文標題:【行業(yè)資訊】自動駕駛傳感器之攝像頭(十二)特斯拉圖像識別原理闡述

文章出處:【微信號:qidianxiehui,微信公眾號:深圳市汽車電子行業(yè)協(xié)會】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    ADTF驅動??低曄鄼C及qt圖像顯示操作流程#海康威視#傳感器#數據采集#配置#圖像識別

    圖像識別
    康謀自動駕駛
    發(fā)布于 :2025年09月11日 10:25:32

    基于米爾MYC-YM90X安路飛龍DR1開發(fā)板儀表圖像識別系統(tǒng)開發(fā)

    滿足工業(yè)自動化、智能化發(fā)展需求。圖像識別技術為儀表自動化讀數提供了有效途徑。隨著集成電路技術發(fā)展,異構計算芯片在圖像識別領域優(yōu)勢凸顯。安路飛龍 FPSOC 集成 ARM 處理器與 FPGA 可編程邏輯
    發(fā)表于 08-17 21:29

    華怡豐推出ISC-B/C系列圖像識別傳感器

    在工業(yè)自動化領域,精準、高效的視覺檢測是提升生產效率的關鍵。華怡豐全新推出的ISC-B/C系列圖像識別傳感器集高精度定位、測量算法與先進圖像處理技術于一體,為各類工業(yè)場景提供穩(wěn)定、可靠的解決方案!
    的頭像 發(fā)表于 08-15 11:36 ?919次閱讀
    華怡豐推出ISC-B/C系列<b class='flag-5'>圖像識別</b>傳感器

    基于FPGA的數字識別系統(tǒng)設計

    圖像處理領域,圖像識別是較為困難而關鍵的技術。這項技術被廣泛的應用到娛樂、工業(yè)、軍事等領域。本次設計數字識別系統(tǒng)已經在車牌識別、運動員號碼識別
    的頭像 發(fā)表于 07-16 14:28 ?941次閱讀
    基于FPGA的數字<b class='flag-5'>識別</b>系統(tǒng)設計

    火車車號圖像識別系統(tǒng)如何應對不同光照條件下的識別問題?

    在鐵路運輸管理中,準確識別火車車號是實現(xiàn)自動化車輛管理的關鍵環(huán)節(jié)。然而,實際應用場景中復雜多變的光照條件給車號識別帶來了巨大挑戰(zhàn)?,F(xiàn)代火車車號圖像識別系統(tǒng)通過多項技術創(chuàng)新,有效解決了這一難題。 多
    的頭像 發(fā)表于 07-15 11:37 ?417次閱讀
    火車車號<b class='flag-5'>圖像識別</b>系統(tǒng)如何應對不同光照條件下的<b class='flag-5'>識別</b>問題?

    想用K230放在無人機上做圖像識別,加裝一個4G模塊把識別結果和畫面同時傳輸的地面站或者手機上,怎么操作?

    我想用K230放在無人機上做圖像識別,然后想加裝一個4G模塊把識別結果和畫面同時傳輸的地面站或者手機上,這個目前可以如何處理? 你好,目前底層是支持4G模塊得驅動,參考https
    發(fā)表于 06-16 07:08

    手持終端集裝箱識別系統(tǒng)的圖像識別技術

    行業(yè)提供了更靈活、精準的管理工具。 一、技術核心:OCR+AI深度融合 現(xiàn)代手持終端系統(tǒng)采用多模態(tài)圖像識別技術,結合深度學習算法,可快速捕捉并解析集裝箱號碼。其技術優(yōu)勢體現(xiàn)在: 1. 復雜環(huán)境適應性:通過動態(tài)曝光補償和圖像增強算
    的頭像 發(fā)表于 04-03 10:49 ?474次閱讀

    岸橋箱號識別系統(tǒng)如何工作?揭秘AI圖像識別技術!

    在港口自動化升級的浪潮中,AI岸橋識別系統(tǒng)憑借前沿的圖像識別技術,成為提升碼頭作業(yè)效率的“智慧之眼”。那么,這套系統(tǒng)如何實現(xiàn)集裝箱信息的精準捕捉?又是如何通過AI技術替代傳統(tǒng)人工理貨?讓我們一探
    的頭像 發(fā)表于 04-02 09:45 ?443次閱讀

    驚了!這個“神器”讓樹莓派秒變智能管家,圖像識別+無線投屏,太秀了!

    和BalenaCloud,讓樹莓派實現(xiàn)從圖像識別到智能生活的華麗轉身!圖像分類項目:用樹莓派和BalenaOS實現(xiàn)智能識別1.項目背景:讓樹莓派“看懂”世界想象一下,你的
    的頭像 發(fā)表于 03-25 09:23 ?1109次閱讀
    驚了!這個“神器”讓樹莓派秒變智能管家,<b class='flag-5'>圖像識別</b>+無線投屏,太秀了!

    【幸狐Omni3576邊緣計算套件試用體驗】RKNN 推理測試與圖像識別

    【幸狐 Omni3576 邊緣計算套件測評】RKNN 推理測試與圖像識別 本文介紹了幸狐 Omni3576 邊緣計算套件實現(xiàn) RKNN 推理和圖像物體識別的測試流程,包括 RKNN 介紹、環(huán)境搭建
    發(fā)表于 03-20 16:14

    BP神經網絡在圖像識別中的應用

    BP神經網絡在圖像識別中發(fā)揮著重要作用,其多層結構使得網絡能夠學習到復雜的特征表達,適用于處理非線性問題。以下是對BP神經網絡在圖像識別中應用的分析: 一、BP神經網絡基本原理 BP神經網絡,即反向
    的頭像 發(fā)表于 02-12 15:12 ?988次閱讀

    AI模型部署邊緣設備的奇妙之旅:目標檢測模型

    1簡介人工智能圖像識別是人工智能領域的一個重要分支,它涉及計算機視覺、深度學習、機器學習等多個領域的知識和技術。圖像識別主要是處理具有一定復雜性的信息。計算機采用與人類類似的圖像識別原理,即對
    的頭像 發(fā)表于 12-19 14:12 ?1607次閱讀
    AI模型部署邊緣設備的奇妙之旅:目標檢測模型

    高幀頻圖像識別反無人機 慧視有辦法!

    無人機的迅猛發(fā)展,使得無人機的反制技術也水漲船高,常見的有電子干擾、無人機識別對抗等。前者通過發(fā)射特定頻率的無線電波對無人機的通信鏈路、控制信號實施干擾。后者采用圖像識別技術,通過在無人機微型攝像頭
    的頭像 發(fā)表于 12-04 01:06 ?836次閱讀
    高幀頻<b class='flag-5'>圖像識別</b>反無人機   慧視有辦法!

    AI圖像識別攝像機

    隨著科技的迅猛發(fā)展,人工智能(AI)在各個領域的應用越來越廣泛,其中圖像識別技術尤為引人注目。AI圖像識別攝像機作為這一技術的重要應用之一,正在逐步改變我們的生活和工作方式。什么是AI圖像識別攝像機
    的頭像 發(fā)表于 11-08 10:38 ?1161次閱讀
    AI<b class='flag-5'>圖像識別</b>攝像機

    AI大模型在圖像識別中的優(yōu)勢

    AI大模型在圖像識別中展現(xiàn)出了顯著的優(yōu)勢,這些優(yōu)勢主要源于其強大的計算能力、深度學習算法以及大規(guī)模的數據處理能力。以下是對AI大模型在圖像識別中優(yōu)勢的介紹: 一、高效性與準確性 處理速度 :AI
    的頭像 發(fā)表于 10-23 15:01 ?2957次閱讀