chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA加速虛擬人項目渲染與推理效率

NVIDIA英偉達企業(yè)解決方案 ? 來源:NVIDIA英偉達企業(yè)解決方案 ? 作者:NVIDIA英偉達企業(yè)解 ? 2021-10-22 09:12 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

騰訊AI LAB致力于打造產(chǎn)學研用一體的 AI 生態(tài),主要的研究方向包括計算機視覺、語音識別、自然語言處理和機器學習,結(jié)合騰訊場景與業(yè)務優(yōu)勢,在社交AI、游戲AI、內(nèi)容AI及平臺AI等領域取得了顯著的成果,技術被應用于微信、QQ、天天快報和QQ音樂等上百個騰訊產(chǎn)品。其中圍棋AI “絕藝” 多次獲得世界人工智能圍棋大賽的冠軍。

騰訊AI LAB打造的虛擬人,具有自然、生動且飽含情緒的表情,其背后由一套騰訊 AI LAB 自研的復雜系統(tǒng)支撐,系統(tǒng)首先要從文本中提取不同信息,包括表情、情感、重音位置、和激動程度等;提取之后,這些信息被輸入到模型中生成,再同步生成語音、口型和表情參數(shù),最終才有了虛擬人自然生動的表現(xiàn)。

虛擬人物打造需要更高效平臺

根據(jù)虛擬人物需要表達的語言和情感,生成自然生動的人臉,是打造虛擬人重要的一個階段。需要先渲染人臉的紋理圖和渲染圖,并將它們輸入到深度學習模型中,最終生成自然生動的人臉。在這個過程中,需要用到OpenGL、OpenCV、CUDA、TensorFlow等軟件技術,騰訊原有的方案有很多CPUGPU的數(shù)據(jù)交互,且有很多計算型的操作通過CPU來實現(xiàn),效率非常低下, 無論是吞吐還是延時都不滿足要求,具體體現(xiàn)在:

OpenGL在GPU上渲染好圖像繪制到framebuffer后,需要先用glReadPixels拷貝數(shù)據(jù)到CPU,再用cudaMemcpy將數(shù)據(jù)從CPU拷回到GPU以進行深度學習模型的推理,這里有兩次不必要的CPU與GPU之間的數(shù)據(jù)傳輸。

顏色空間轉(zhuǎn)換方面,深度學習推理的前后處理等操作在CPU上完成,效率非常低下。

NVIDIA 加速虛擬人項目渲染與推理效率

NVIDIA 技術在虛擬人項目的渲染和推理階段均提供了強大的支持。在渲染階段,NVIDIA 助力提升了顏色空間轉(zhuǎn)換效率,降低整體延時,主要體現(xiàn)在:

1. 用NVIDIA CUDA/OpenGL interoperability 代替騰訊之前使用glReadPixels在CUDA和OpenGL之間拷貝數(shù)據(jù)的方案,大幅減少了CPU和GPU之間的數(shù)據(jù)拷貝,從而降低了整體的延時。

2. 把原來在CPU上做的顏色空間轉(zhuǎn)換的操作,遷移到NVIDIA T4 GPU上用CUDA kernel實現(xiàn),利用GPU的并行優(yōu)勢,大大提高了顏色空間轉(zhuǎn)換的效率,進一步降低了整體的延時。

3. 將多幀的mesh組成一個batch分別繪制到framebuffer的不同區(qū)域,在提高OpenGL并行度的同時,給下一階段的深度學習模型的推理提供了更大的輸入數(shù)據(jù)的batch size,充分發(fā)揮NVIDIA T4 GPU高并發(fā)計算的優(yōu)勢,進一步提高GPU的利用率,從而提高整體的吞吐。

在推理階段,NVIDIA助力提高推理整體吞吐,降低推理延時,主要體現(xiàn)在以下幾點:

1. 用NVIDIA TensorRT替換TensorFlow對模型推理進行加速,并利用NVIDIA T4 GPU上的FP16 Tensor Core可以極大提高矩陣乘等操作速度的特性,在最終視覺效果幾乎不變的情況下,進一步提升推理的吞吐,降低推理延時。

2. 在NVIDIA T4 GPU上利用CUDA kernel 替代原始流程中在CPU上使用OpenCV實現(xiàn) Mat-to-Tensor 和 Tensor-to-Mat 等格式轉(zhuǎn)換操作,并使用OpenCV-CUDA版替換OpenCV-CPU版的部分操作(如Resize等),充分發(fā)揮GPU相對于CPU更高的并發(fā)優(yōu)勢,在加速這些操作的同時減少GPU到CPU的數(shù)據(jù)傳輸通信量,提高格式轉(zhuǎn)換效率,降低端到端的推理延時。

3. 通過Pipeline的方式,使GPU和CPU上的操作進行overlap,并結(jié)合NVIDIA的MPS技術提高單卡上多個進程同時處理多個數(shù)據(jù)流的同時提高整體的吞吐。

在虛擬人項目中,NVIDIA CUDA技術大幅提升了渲染速度,NVIDIA TensorRT 方便快速地加速深度學習模型的推理,結(jié)合MPS技術,實現(xiàn)了單卡多路推流,使整體推理效率達到了原來的三倍!性能的大幅提升,既提升了GPU的利用率,又降低了AI技術的使用成本。責任編輯:haq

騰訊AI LAB致力于打造產(chǎn)學研用一體的 AI 生態(tài),主要的研究方向包括計算機視覺、語音識別、自然語言處理和機器學習,結(jié)合騰訊場景與業(yè)務優(yōu)勢,在社交AI、游戲AI、內(nèi)容AI及平臺AI等領域取得了顯著的成果,技術被應用于微信、QQ、天天快報和QQ音樂等上百個騰訊產(chǎn)品。其中圍棋AI “絕藝” 多次獲得世界人工智能圍棋大賽的冠軍。 騰訊AI LAB打造的虛擬人,具有自然、生動且飽含情緒的表情,其背后由一套騰訊 AI LAB 自研的復雜系統(tǒng)支撐,系統(tǒng)首先要從文本中提取不同信息,包括表情、情感、重音位置、和激動程度等;提取之后,這些信息被輸入到模型中生成,再同步生成語音、口型和表情參數(shù),最終才有了虛擬人自然生動的表現(xiàn)。

虛擬人物打造需要更高效平臺

根據(jù)虛擬人物需要表達的語言和情感,生成自然生動的人臉,是打造虛擬人重要的一個階段。需要先渲染人臉的紋理圖和渲染圖,并將它們輸入到深度學習模型中,最終生成自然生動的人臉。在這個過程中,需要用到OpenGL、OpenCV、CUDA、TensorFlow等軟件技術,騰訊原有的方案有很多CPU與GPU的數(shù)據(jù)交互,且有很多計算型的操作通過CPU來實現(xiàn),效率非常低下, 無論是吞吐還是延時都不滿足要求,具體體現(xiàn)在:

OpenGL在GPU上渲染好圖像繪制到framebuffer后,需要先用glReadPixels拷貝數(shù)據(jù)到CPU,再用cudaMemcpy將數(shù)據(jù)從CPU拷回到GPU以進行深度學習模型的推理,這里有兩次不必要的CPU與GPU之間的數(shù)據(jù)傳輸。

顏色空間轉(zhuǎn)換方面,深度學習推理的前后處理等操作在CPU上完成,效率非常低下。

NVIDIA加速虛擬人項目渲染與推理效率

NVIDIA 技術在虛擬人項目的渲染和推理階段均提供了強大的支持。在渲染階段,NVIDIA 助力提升了顏色空間轉(zhuǎn)換效率,降低整體延時,主要體現(xiàn)在: 1. 用NVIDIA CUDA/OpenGL interoperability 代替騰訊之前使用glReadPixels在CUDA和OpenGL之間拷貝數(shù)據(jù)的方案,大幅減少了CPU和GPU之間的數(shù)據(jù)拷貝,從而降低了整體的延時。 2. 把原來在CPU上做的顏色空間轉(zhuǎn)換的操作,遷移到NVIDIA T4 GPU上用CUDA kernel實現(xiàn),利用GPU的并行優(yōu)勢,大大提高了顏色空間轉(zhuǎn)換的效率,進一步降低了整體的延時。 3. 將多幀的mesh組成一個batch分別繪制到framebuffer的不同區(qū)域,在提高OpenGL并行度的同時,給下一階段的深度學習模型的推理提供了更大的輸入數(shù)據(jù)的batch size,充分發(fā)揮NVIDIA T4 GPU高并發(fā)計算的優(yōu)勢,進一步提高GPU的利用率,從而提高整體的吞吐。

在推理階段,NVIDIA助力提高推理整體吞吐,降低推理延時,主要體現(xiàn)在以下幾點:
1. 用NVIDIA TensorRT替換TensorFlow對模型推理進行加速,并利用NVIDIA T4 GPU上的FP16 Tensor Core可以極大提高矩陣乘等操作速度的特性,在最終視覺效果幾乎不變的情況下,進一步提升推理的吞吐,降低推理延時。
2. 在NVIDIA T4 GPU上利用CUDA kernel 替代原始流程中在CPU上使用OpenCV實現(xiàn) Mat-to-Tensor 和 Tensor-to-Mat 等格式轉(zhuǎn)換操作,并使用OpenCV-CUDA版替換OpenCV-CPU版的部分操作(如Resize等),充分發(fā)揮GPU相對于CPU更高的并發(fā)優(yōu)勢,在加速這些操作的同時減少GPU到CPU的數(shù)據(jù)傳輸通信量,提高格式轉(zhuǎn)換效率,降低端到端的推理延時。
3. 通過Pipeline的方式,使GPU和CPU上的操作進行overlap,并結(jié)合NVIDIA的MPS技術提高單卡上多個進程同時處理多個數(shù)據(jù)流的同時提高整體的吞吐。 在虛擬人項目中,NVIDIA CUDA技術大幅提升了渲染速度,NVIDIA TensorRT 方便快速地加速深度學習模型的推理,結(jié)合MPS技術,實現(xiàn)了單卡多路推流,使整體推理效率達到了原來的三倍!性能的大幅提升,既提升了GPU的利用率,又降低了AI技術的使用成本。 責任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • cpu
    cpu
    +關注

    關注

    68

    文章

    11076

    瀏覽量

    216998
  • NVIDIA
    +關注

    關注

    14

    文章

    5308

    瀏覽量

    106340
  • AI
    AI
    +關注

    關注

    88

    文章

    35093

    瀏覽量

    279460
  • 深度學習
    +關注

    關注

    73

    文章

    5561

    瀏覽量

    122783

原文標題:NVIDIA TensorRT和GPU軟件棧助力騰訊AI LAB打造生動的虛擬人

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達企業(yè)解決方案】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    如何在魔搭社區(qū)使用TensorRT-LLM加速優(yōu)化Qwen3系列模型推理部署

    TensorRT-LLM 作為 NVIDIA 專為 LLM 推理部署加速優(yōu)化的開源庫,可幫助開發(fā)者快速利用最新 LLM 完成應用原型驗證與產(chǎn)品部署。
    的頭像 發(fā)表于 07-04 14:38 ?630次閱讀

    NVIDIA實現(xiàn)神經(jīng)網(wǎng)絡渲染技術的突破性增強功能

    發(fā)者能使用 NVIDIA GeForce RTX GPU 中的 AI Tensor Cores,在游戲的圖形渲染管線內(nèi)加速神經(jīng)網(wǎng)絡渲染。
    的頭像 發(fā)表于 04-07 11:33 ?439次閱讀

    NVIDIA虛擬GPU 18.0版本的亮點

    NVIDIA 虛擬 GPU(vGPU)技術可在虛擬桌面基礎設施(VDI)中解鎖 AI 功能,使其比以往更加強大、用途更加廣泛。vGPU 通過為各種虛擬化環(huán)境中的 AI 驅(qū)動工作負載提供
    的頭像 發(fā)表于 04-07 11:28 ?676次閱讀

    NVIDIA加速的Apache Spark助力企業(yè)節(jié)省大量成本

    隨著 NVIDIA 推出 Aether 項目,通過采用 NVIDIA 加速的 Apache Spark 企業(yè)得以自動加速其數(shù)據(jù)中心規(guī)模的分析
    的頭像 發(fā)表于 03-25 15:09 ?537次閱讀
    <b class='flag-5'>NVIDIA</b><b class='flag-5'>加速</b>的Apache Spark助力企業(yè)節(jié)省大量成本

    英偉達GTC2025亮點:Oracle與NVIDIA合作助力企業(yè)加速代理式AI推理

    Oracle 數(shù)據(jù)庫與 NVIDIA AI 相集成,使企業(yè)能夠更輕松、快捷地采用代理式 AI Oracle 和 NVIDIA 宣布,NVIDIA 加速計算和
    的頭像 發(fā)表于 03-21 12:01 ?697次閱讀
    英偉達GTC2025亮點:Oracle與<b class='flag-5'>NVIDIA</b>合作助力企業(yè)<b class='flag-5'>加速</b>代理式AI<b class='flag-5'>推理</b>

    英偉達GTC25亮點:NVIDIA Dynamo開源庫加速并擴展AI推理模型

    DeepSeek-R1 上的吞吐量提高了 30 倍 NVIDIA 發(fā)布了開源推理軟件 NVIDIA Dynamo,旨在以高效率、低成本加速
    的頭像 發(fā)表于 03-20 15:03 ?641次閱讀

    Oracle 與 NVIDIA 合作助力企業(yè)加速代理式 AI 推理

    ——Oracle 和 NVIDIA 今日宣布,NVIDIA 加速計算和推理軟件與 Oracle 的 AI 基礎設施以及生成式 AI 服務首次實現(xiàn)集成,以幫助全球企業(yè)組織
    發(fā)表于 03-19 15:24 ?355次閱讀
    Oracle 與 <b class='flag-5'>NVIDIA</b> 合作助力企業(yè)<b class='flag-5'>加速</b>代理式 AI <b class='flag-5'>推理</b>

    使用NVIDIA推理平臺提高AI推理性能

    NVIDIA推理平臺提高了 AI 推理性能,為零售、電信等行業(yè)節(jié)省了數(shù)百萬美元。
    的頭像 發(fā)表于 02-08 09:59 ?709次閱讀
    使用<b class='flag-5'>NVIDIA</b><b class='flag-5'>推理</b>平臺提高AI<b class='flag-5'>推理</b>性能

    科大訊飛AI虛擬人交互平臺榮獲行業(yè)最高評級

    近日,科大訊飛的AI虛擬人交互平臺順利完成中國信通院人工智能研究所組織的大模型數(shù)字人基礎能力分級測試,并獲得最高等級L5認證,系國內(nèi)首批。
    的頭像 發(fā)表于 12-13 11:39 ?872次閱讀

    NVIDIA助力麗蟾科技打造AI訓練與推理加速解決方案

    麗蟾科技通過 Leaper 資源管理平臺集成 NVIDIA AI Enterprise,為企業(yè)和科研機構(gòu)提供了一套高效、靈活的 AI 訓練與推理加速解決方案。無論是在復雜的 AI 開發(fā)任務中,還是在高并發(fā)
    的頭像 發(fā)表于 10-27 10:03 ?816次閱讀
    <b class='flag-5'>NVIDIA</b>助力麗蟾科技打造AI訓練與<b class='flag-5'>推理</b><b class='flag-5'>加速</b>解決方案

    數(shù)字王國與AWS達成合作,推動自主虛擬人技術云端發(fā)展

    近日,數(shù)字王國與Amazon Web Services(AWS)達成了一項重要合作,雙方將攜手推動自主虛擬人及其技術向云端遷移。
    的頭像 發(fā)表于 10-09 16:38 ?674次閱讀

    微軟Azure AI語音服務革新:引入虛擬人形象,文本一鍵轉(zhuǎn)生動視頻

    微軟于8月23日宣布,在其領先的Azure AI語音服務中融入了一項革命性創(chuàng)新——虛擬人形象功能,此功能徹底顛覆了傳統(tǒng)交互方式,讓文本轉(zhuǎn)視頻的過程變得前所未有的直觀與生動。
    的頭像 發(fā)表于 08-23 16:25 ?1076次閱讀

    魔搭社區(qū)借助NVIDIA TensorRT-LLM提升LLM推理效率

    “魔搭社區(qū)是中國最具影響力的模型開源社區(qū),致力給開發(fā)者提供模型即服務的體驗。魔搭社區(qū)利用NVIDIA TensorRT-LLM,大大提高了大語言模型的推理性能,方便了模型應用部署,提高了大模型產(chǎn)業(yè)應用效率,更大規(guī)模地釋放大模型的
    的頭像 發(fā)表于 08-23 15:48 ?1132次閱讀

    英偉達推出全新NVIDIA AI Foundry服務和NVIDIA NIM推理微服務

    NVIDIA 宣布推出全新 NVIDIA AI Foundry 服務和 NVIDIA NIM 推理微服務,與同樣剛推出的 Llama 3.1 系列開源模型一起,為全球企業(yè)的生成式 AI
    的頭像 發(fā)表于 07-25 09:48 ?1055次閱讀

    LLM大模型推理加速的關鍵技術

    LLM(大型語言模型)大模型推理加速是當前人工智能領域的一個研究熱點,旨在提高模型在處理復雜任務時的效率和響應速度。以下是對LLM大模型推理加速
    的頭像 發(fā)表于 07-24 11:38 ?1799次閱讀