chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)通過繪畫3D地形識(shí)別畫家

星星科技指導(dǎo)員 ? 來源:NVIDIA ? 作者:ichelle Horton ? 2022-04-07 17:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

通過一種新開發(fā)的人工智能工具,識(shí)別繪畫偽造品變得更容易了。該工具可以精確地識(shí)別風(fēng)格差異,精確到一個(gè)畫筆刷毛。 Case Western Reserve University ( CWRU )團(tuán)隊(duì)的 research 通過訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò),根據(jù)繪畫的 3D 地形來學(xué)習(xí)和識(shí)別畫家。這項(xiàng)工作可以幫助歷史學(xué)家和藝術(shù)專家區(qū)分合作作品中的藝術(shù)家,并找到偽造的作品。

鑒定古畫有幾種方法。專家經(jīng)常評(píng)估材料的類型和狀態(tài),并使用科學(xué)方法,如顯微分析、紅外光譜和反射術(shù)。

但是,這些詳盡的方法非常耗時(shí),可能會(huì)導(dǎo)致錯(cuò)誤。他們也無法識(shí)別一件藝術(shù)品的多個(gè)畫家。根據(jù)這項(xiàng)研究,像埃爾·格雷科和倫勃朗這樣的畫家經(jīng)常雇傭藝術(shù)家的工作室,以與自己相同的風(fēng)格繪制畫布的各個(gè)部分,使得個(gè)人貢獻(xiàn)不明確。

雖然用機(jī)器學(xué)習(xí)分析藝術(shù)品是一個(gè)相對(duì)較新的領(lǐng)域,但最近的研究集中于將人工智能方法與高分辨率的繪畫圖像相結(jié)合,以了解畫家的風(fēng)格并識(shí)別畫家。研究人員假設(shè), 3D 分析可以保存比圖像更多的數(shù)據(jù),在圖像中,筆觸圖案、油漆沉積和干燥方法等特征可以作為藝術(shù)家獨(dú)特的指紋。

CWRU 的安布羅斯·斯瓦西物理學(xué)教授、資深作家肯尼斯·辛格( Kenneth Singer )在一份 press release 的報(bào)告中說:“ 3D 地形是人工智能“看到”繪畫的一種新方式。”。

研究人員用光學(xué)輪廓儀從一個(gè)表面提取地形數(shù)據(jù),掃描了同一場(chǎng)景的 12 幅畫,用相同的材料繪制,但由四位不同的藝術(shù)家繪制。光學(xué)輪廓儀通過對(duì)約 5 至 15 mm 的小方形藝術(shù)片進(jìn)行采樣,檢測(cè)并記錄表面的微小變化,這可歸因于某人如何握住和使用畫筆。

然后,他們訓(xùn)練一組卷積神經(jīng)網(wǎng)絡(luò)來發(fā)現(xiàn)小斑塊中的模式,為每個(gè)藝術(shù)家采樣 160 到 1440 個(gè)斑塊。使用 NVIDIA GPU 和 cuDNN 加速深度學(xué)習(xí)框架,該算法將樣本匹配回單個(gè)畫家。

研究小組對(duì)一位藝術(shù)家的 180 幅油畫進(jìn)行了算法測(cè)試,將樣本與一位畫家進(jìn)行了匹配,準(zhǔn)確率約為 95% 。

據(jù)合著者、 CWRU 的 Warren E.Rupp 物理學(xué)副教授 Michael Hinczewski 所說,在訓(xùn)練數(shù)據(jù)集有限的情況下,使用如此小的訓(xùn)練集的能力對(duì)于后來的藝術(shù)歷史應(yīng)用是有希望的。

辛切夫斯基說:“其他大多數(shù)使用人工智能進(jìn)行藝術(shù)歸屬的研究都集中在整個(gè)繪畫的照片上?!薄!拔覀儗⑦@幅畫分解成從半毫米到幾厘米見方的虛擬小塊。因此我們甚至不再有關(guān)于主題的信息,但我們可以從單個(gè)小塊準(zhǔn)確地預(yù)測(cè)誰畫了它。這太神奇了?!?/p>

根據(jù)他們的發(fā)現(xiàn),研究人員將表面形貌視為使用無偏定量分析進(jìn)行歸因和偽造檢測(cè)的額外工具。在與位于馬德里的藝術(shù)保護(hù)公司 Factum Arte 的合作下,該團(tuán)隊(duì)正在對(duì)西班牙文藝復(fù)興時(shí)期畫家 El Greco 的幾件作品進(jìn)行藝術(shù)家工作室歸屬和保護(hù)研究。

與研究相關(guān)的數(shù)據(jù)和代碼可通過 GitHub 獲取。這項(xiàng)工作是來自 CWRU 藝術(shù)史和藝術(shù)系、克利夫蘭藝術(shù)學(xué)院和克利夫蘭藝術(shù)博物館的研究人員的共同努力。

關(guān)于作者

Michelle Horton 是 NVIDIA 的高級(jí)開發(fā)人員通信經(jīng)理,擁有通信經(jīng)理和科學(xué)作家的背景。她在 NVIDIA 為開發(fā)者博客撰文,重點(diǎn)介紹了開發(fā)者使用 NVIDIA 技術(shù)的多種方式。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4824

    瀏覽量

    106722
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5494

    瀏覽量

    109016
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49701

    瀏覽量

    261139
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    自動(dòng)駕駛中常提的卷積神經(jīng)網(wǎng)絡(luò)是個(gè)啥?

    在自動(dòng)駕駛領(lǐng)域,經(jīng)常會(huì)聽到卷積神經(jīng)網(wǎng)絡(luò)技術(shù)。卷積神經(jīng)網(wǎng)絡(luò),簡(jiǎn)稱為CNN,是一種專門用來處理網(wǎng)格狀數(shù)據(jù)(比如圖像)的深度學(xué)習(xí)模型。CNN在圖像處理中尤其常見,因?yàn)閳D像本身就可以看作是由像
    的頭像 發(fā)表于 11-19 18:15 ?1804次閱讀
    自動(dòng)駕駛中常提的<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>是個(gè)啥?

    CNN卷積神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)原理及在MCU200T上仿真測(cè)試

    數(shù)的提出很大程度的解決了BP算法在優(yōu)化深層神經(jīng)網(wǎng)絡(luò)時(shí)的梯度耗散問題。當(dāng)x&gt;0 時(shí),梯度恒為1,無梯度耗散問題,收斂快;當(dāng)x&lt;0 時(shí),該層的輸出為0。 CNN
    發(fā)表于 10-29 07:49

    NMSIS神經(jīng)網(wǎng)絡(luò)庫(kù)使用介紹

    (q7_t) 和 16 位整數(shù) (q15_t)。 卷積神經(jīng)網(wǎng)絡(luò)示例: 本示例中使用的 CNN 基于來自 Caffe 的 CIFAR-10 示例。神經(jīng)網(wǎng)絡(luò)3 個(gè)
    發(fā)表于 10-29 06:08

    構(gòu)建CNN網(wǎng)絡(luò)模型并優(yōu)化的一般化建議

    :Dropout層隨機(jī)跳過神經(jīng)網(wǎng)絡(luò)模型中某些神經(jīng)元之間的連接,通過隨機(jī)制造缺陷進(jìn)行訓(xùn)練提升整個(gè)神經(jīng)網(wǎng)絡(luò)的魯棒性。 6)指定合理的學(xué)習(xí)率策
    發(fā)表于 10-28 08:02

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識(shí)別。一旦模型被訓(xùn)練并保存,就可以用于對(duì)新圖像進(jìn)行推理和預(yù)
    發(fā)表于 10-22 07:03

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速器上。首先需要將所有權(quán)重?cái)?shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲(chǔ)器內(nèi)。 在仿真環(huán)境下,可將其存于一個(gè)文件,并在 Verilog 代碼中通過 readmemh 函數(shù)
    發(fā)表于 10-20 08:00

    無刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    摘要:論文通過對(duì)無刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)轉(zhuǎn)角預(yù)測(cè),并采用改進(jìn)遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)
    發(fā)表于 06-25 13:06

    基于FPGA搭建神經(jīng)網(wǎng)絡(luò)的步驟解析

    本文的目的是在一個(gè)神經(jīng)網(wǎng)絡(luò)已經(jīng)通過python或者M(jìn)ATLAB訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)模型,將訓(xùn)練好的模型的權(quán)重和偏置文件以TXT文件格式導(dǎo)出,然后
    的頭像 發(fā)表于 06-03 15:51 ?878次閱讀
    基于FPGA搭建<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的步驟解析

    自動(dòng)駕駛感知系統(tǒng)中卷積神經(jīng)網(wǎng)絡(luò)原理的疑點(diǎn)分析

    和語音識(shí)別等領(lǐng)域取得了顯著成就,并廣泛用于車輛自動(dòng)駕駛的圖像目標(biāo)識(shí)別中。 1.局部連接:CNN通過局部連接的方式減少了網(wǎng)絡(luò)自由參數(shù)的個(gè)數(shù),從而降低了計(jì)算復(fù)雜度,并使
    的頭像 發(fā)表于 04-07 09:15 ?626次閱讀
    自動(dòng)駕駛感知系統(tǒng)中<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>原理的疑點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號(hào)在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積
    的頭像 發(fā)表于 02-12 15:53 ?1279次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:36 ?1527次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算
    的頭像 發(fā)表于 02-12 15:18 ?1256次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整
    的頭像 發(fā)表于 02-12 15:15 ?1321次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別中的應(yīng)用

    傳播神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network),是一種多層前饋神經(jīng)網(wǎng)絡(luò),主要通過反向傳播算法進(jìn)行學(xué)習(xí)。它通常包括輸入層、一個(gè)或多個(gè)隱藏層和輸出層。BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:12 ?1161次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個(gè)階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?1429次閱讀