chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何使用深度學(xué)習(xí)包在LAMMPS中驅(qū)動(dòng)MD模擬

星星科技指導(dǎo)員 ? 來源:NVIDIA ? 作者:NVIDIA ? 2022-04-08 17:39 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

幾十年來,分子模擬界在模擬勢(shì)能面和原子間作用力時(shí)面臨著精度與效率的兩難選擇。深勢(shì),人工神經(jīng)網(wǎng)絡(luò)力場(chǎng),通過結(jié)合經(jīng)典分子動(dòng)力學(xué)( MD )模擬的速度和密度泛函理論( DFT )計(jì)算的準(zhǔn)確性來解決這個(gè)問題。 這是通過使用 GPU – 優(yōu)化包 DeePMD-kit 實(shí)現(xiàn)的,這是一個(gè)用于多體勢(shì)能表示和 MD 模擬的深度學(xué)習(xí)包。

這篇文章提供了一個(gè)端到端的演示,演示如何為二維材料石墨烯訓(xùn)練神經(jīng)網(wǎng)絡(luò)潛力,并使用它在開源平臺(tái)大型原子/分子大規(guī)模并行模擬器( LAMMPS )中驅(qū)動(dòng) MD 模擬。 培訓(xùn)數(shù)據(jù)可從維也納從頭算模擬軟件包( VASP )獲得 ,或量子濃縮咖啡( QE )。

分子建模、機(jī)器學(xué)習(xí)和高性能計(jì)算( HPC )的無縫集成通過分子動(dòng)力學(xué)和從頭算準(zhǔn)確性—這完全是通過基于容器的工作流來實(shí)現(xiàn)的。利用人工智能技術(shù)擬合 DFT 產(chǎn)生的原子間作用力,可以通過線性標(biāo)度將可訪問的時(shí)間和尺寸標(biāo)度提高幾個(gè)數(shù)量級(jí)。

深度潛能本質(zhì)上是機(jī)器學(xué)習(xí)和物理原理的結(jié)合,它開啟了一種新的計(jì)算范式,如圖 1 所示。

pYYBAGJQAvCAExdYAAXj8091ofo087.png

圖 1 。由分子建模、人工智能和高性能計(jì)算組成的新計(jì)算范式。(圖提供:張林峰博士, DP 技術(shù))

整個(gè)工作流如圖 2 所示。數(shù)據(jù)生成步驟由 VASP 和 QE 完成。數(shù)據(jù)準(zhǔn)備、模型訓(xùn)練、測(cè)試和壓縮步驟使用 DeePMD 工具包完成。模型部署在 LAMMPS 中。

poYBAGJQAveAVl3PAABu4cLew7I826.png

圖 2 。 DeePMD 工作流程圖。

為什么是集裝箱?

容器是一個(gè)可移植的軟件單元,它將應(yīng)用程序及其所有依賴項(xiàng)組合到一個(gè)與底層主機(jī)操作系統(tǒng)無關(guān)的包中。

本文中的工作流程涉及 AIMD 、 DP 培訓(xùn)和 LAMMPS MD 模擬。使用正確的編譯器設(shè)置、 MPI 、 GPU 庫和優(yōu)化標(biāo)志從源代碼安裝每個(gè)軟件包是非常重要和耗時(shí)的。

容器通過為每個(gè)步驟提供一個(gè)高度優(yōu)化的 GPU 支持的計(jì)算環(huán)境來解決這個(gè)問題,并且消除了安裝和測(cè)試軟件的時(shí)間。

NGC 目錄是 GPU 優(yōu)化的 HPC 和 AI 軟件的集線器,它攜帶了整個(gè) HPC 和 AI 容器 ,可以很容易地部署在任何 GPU 系統(tǒng)上。 NGC 目錄中的 HPC 和 AI 容器經(jīng)常更新,并進(jìn)行可靠性和性能測(cè)試,這對(duì)于加快解決時(shí)間是必要的。

還將掃描這些容器的常見漏洞和暴露( CVE ),確保它們沒有任何開放端口和惡意軟件。此外, HPC 容器支持 Docker 和 Singularity 運(yùn)行時(shí),并且可以部署在云中或本地運(yùn)行的多[ZFBB]和多節(jié)點(diǎn)系統(tǒng)上。

訓(xùn)練數(shù)據(jù)生成

模擬的第一步是數(shù)據(jù)生成。我們將向您展示如何使用 VASP 和 Quantum ESPRESSO 來運(yùn)行 AIMD 模擬并為 DeePMD 生成訓(xùn)練數(shù)據(jù)集??梢允褂靡韵旅顝?GitHub 存儲(chǔ)庫下載所有輸入文件:

git clone https://github.com/deepmodeling/SC21_DP_Tutorial.git

VASP

如圖 3 所示,使用具有 98 個(gè)原子的二維石墨烯系統(tǒng)。 為了生成訓(xùn)練數(shù)據(jù)集,在 300K 下進(jìn)行 0 。 5ps NVT AIMD 模擬。選擇的時(shí)間步長(zhǎng)為 0 。 5fs 。 DP 模型是使用固定溫度下 0 。 5ps MD 軌跡的 1000 個(gè)時(shí)間步長(zhǎng)創(chuàng)建的。

由于仿真時(shí)間較短,訓(xùn)練數(shù)據(jù)集包含連續(xù)的系統(tǒng)快照,這些快照高度相關(guān)。通常,訓(xùn)練數(shù)據(jù)集應(yīng)從與各種系統(tǒng)條件和配置不相關(guān)的快照中采樣。對(duì)于這個(gè)例子,我們使用了一個(gè)簡(jiǎn)化的訓(xùn)練數(shù)據(jù)方案。對(duì)于生產(chǎn) DP 培訓(xùn),建議使用 DP-GEN 利用并行學(xué)習(xí)方案,以有效探索更多的條件組合。

用投影增強(qiáng)波贗勢(shì)描述了價(jià)電子與凍結(jié)核之間的相互作用。廣義梯度近似交換? Perdew 的相關(guān)泛函?伯克?恩澤霍夫。在所有系統(tǒng)中,只有 Γ-point 用于 k-space 采樣。

圖 3 AIMD 模擬中使用了由 98 個(gè)碳原子組成的石墨烯系統(tǒng)。

量子濃縮咖啡

AIMD 模擬也可以使用 Quantum ESPRESSO ( NGC 目錄中的container提供)進(jìn)行。 Quantum ESPRESSO 是一套基于密度泛函理論、平面波和贗勢(shì)的開放源代碼,用于 Nan oscale 的電子結(jié)構(gòu)計(jì)算和材料建模。 QE 計(jì)算中使用了相同的石墨烯結(jié)構(gòu)。以下命令可用于啟動(dòng) AIMD 模擬:

$ singularity exec --nv docker://nvcr.io/hpc/quantum_espresso:qe-6.8 cp.x < c.md98.cp.in

培訓(xùn)數(shù)據(jù)準(zhǔn)備

一旦從 AIMD 仿真中獲得訓(xùn)練數(shù)據(jù),我們希望使用?dpdata因此,它可以作為深層神經(jīng)網(wǎng)絡(luò)的輸入。dpdata包是 AIMD 、 Classic MD 和 DeePMD 工具包之間的格式轉(zhuǎn)換工具包。

您可以使用方便的工具dpdata將數(shù)據(jù)直接從 first principles 軟件包的輸出轉(zhuǎn)換為 DeePMD 工具包格式。對(duì)于深勢(shì)訓(xùn)練,必須提供物理系統(tǒng)的以下信息:原子類型、盒邊界、坐標(biāo)、力、病毒和系統(tǒng)能量。

快照或系統(tǒng)框架在一個(gè)時(shí)間步中包含所有原子的所有這些數(shù)據(jù)點(diǎn),可以以兩種格式存儲(chǔ),即rawnpy。

第一種格式raw是純文本,所有信息都在一個(gè)文件中,文件的每一行表示一個(gè)快照。不同的系統(tǒng)信息存儲(chǔ)在名為box.raw, coord.raw, force.raw, energy.rawvirial.raw的不同文件中。我們建議您在準(zhǔn)備培訓(xùn)文件時(shí)遵循這些命名約定。

force.raw的一個(gè)示例:

$ cat force.raw
-0.724 2.039 -0.951 0.841 -0.464 0.363 6.737 1.554 -5.587 -2.803 0.062 2.222
-1.968 -0.163 1.020 -0.225 -0.789 0.343

這個(gè)force.raw包含三個(gè)框架,每個(gè)框架具有兩個(gè)原子的力,形成三條線和六列。每條線在一幀中提供兩個(gè)原子的所有三個(gè)力分量。前三個(gè)數(shù)字是第一個(gè)原子的三個(gè)力分量,而下三個(gè)數(shù)字是第二個(gè)原子的力分量。

坐標(biāo)文件coord.raw的組織方式類似。在box.raw中,應(yīng)在每行上提供盒向量的九個(gè)分量。在virial.raw中,維里張量的九個(gè)分量應(yīng)按XX XY XZ YX YY YZ ZX ZY ZZ的順序提供在每一行上。所有原始文件的行數(shù)應(yīng)相同。我們假設(shè)原子類型不會(huì)在所有幀中改變。它由type.raw提供,它有一行原子類型,一行一行地寫。

原子類型應(yīng)該是整數(shù)。例如,一個(gè)系統(tǒng)的type.raw有兩個(gè)原子,分別為零和一:

$ cat type.raw
0 1

將數(shù)據(jù)格式轉(zhuǎn)換為raw不是一項(xiàng)要求,但此過程應(yīng)能說明可作為培訓(xùn)用 DeePMD 工具包輸入的數(shù)據(jù)類型。

將第一原理結(jié)果轉(zhuǎn)換為訓(xùn)練數(shù)據(jù)的最簡(jiǎn)單方法是將其保存為 NumPy 二進(jìn)制數(shù)據(jù)。

對(duì)于 VASP 輸出,我們準(zhǔn)備了一個(gè)outcartodata.py腳本來處理 VASP OUTCAR 文件。通過運(yùn)行以下命令:


$ cd SC21_DP_Tutorial/AIMD/VASP/
$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 python outcartodata.py
$ mv deepmd_data ../../DP/

量化寬松產(chǎn)出:

$ cd SC21_DP_Tutorial/AIMD/QE/
$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 python logtodata.py
$ mv deepmd_data ../../DP/

生成名為deepmd_data的文件夾并將其移動(dòng)到培訓(xùn)目錄。它生成五組0/set.000, 1/set.000, 2/set.000, 3/set.000, 4/set.000,每組包含 200 幀。不需要處理每個(gè) set .*目錄中的二進(jìn)制數(shù)據(jù)文件。包含set.*文件夾和type.raw文件的路徑稱為系統(tǒng)。如果要訓(xùn)練非周期系統(tǒng),應(yīng)在系統(tǒng)目錄下放置一個(gè)空nopbc文件。box.raw不是必需的,因?yàn)樗欠侵芷谙到y(tǒng)。

我們將使用五套中的三套進(jìn)行培訓(xùn),一套用于驗(yàn)證,另一套用于測(cè)試。

深勢(shì)模型訓(xùn)練

深勢(shì)模型的輸入是包含前面提到的系統(tǒng)信息的描述符向量。神經(jīng)網(wǎng)絡(luò)包含幾個(gè)隱藏層,由線性和非線性變換組成。在這篇文章中,使用了一個(gè)三層神經(jīng)網(wǎng)絡(luò),每層有 25 個(gè)、 50 個(gè)和 100 個(gè)神經(jīng)元。神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)的目標(biāo)值或標(biāo)簽是原子能。訓(xùn)練過程通過最小化損失函數(shù)來優(yōu)化權(quán)重和偏差向量。

訓(xùn)練由命令啟動(dòng),其中input.json包含訓(xùn)練參數(shù):

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp train input.json

DeePMD 工具包打印培訓(xùn)和驗(yàn)證數(shù)據(jù)集的詳細(xì)信息。數(shù)據(jù)集由輸入腳本的training部分中定義的training_datavalidation_data確定。訓(xùn)練數(shù)據(jù)集由三個(gè)數(shù)據(jù)系統(tǒng)組成,而驗(yàn)證數(shù)據(jù)集由一個(gè)數(shù)據(jù)系統(tǒng)組成。原子數(shù)、批次大小、系統(tǒng)中的批次數(shù)以及使用系統(tǒng)的概率均如圖 4 所示。最后一列顯示系統(tǒng)是否假設(shè)周期邊界條件。

圖 4 DP 培訓(xùn)輸出的屏幕截圖。

在培訓(xùn)期間,每disp_freq培訓(xùn)步驟都會(huì)使用用于培訓(xùn)模型的批次和驗(yàn)證數(shù)據(jù)中的numb_btch批次測(cè)試模型的錯(cuò)誤。在文件disp_file中相應(yīng)地打印訓(xùn)練錯(cuò)誤和驗(yàn)證錯(cuò)誤(默認(rèn)為lcurve.out)??稍谳斎肽_本中通過訓(xùn)練和驗(yàn)證數(shù)據(jù)集相應(yīng)部分中的鍵batch_size設(shè)置批量大小。

輸出的一個(gè)示例:

# step rmse_val rmse_trn rmse_e_val rmse_e_trn rmse_f_val rmse_f_trn lr 0 3.33e+01 3.41e+01 1.03e+01 1.03e+01 8.39e-01 8.72e-01 1.0e-03 100 2.57e+01 2.56e+01 1.87e+00 1.88e+00 8.03e-01 8.02e-01 1.0e-03 200 2.45e+01 2.56e+01 2.26e-01 2.21e-01 7.73e-01 8.10e-01 1.0e-03 300 1.62e+01 1.66e+01 5.01e-02 4.46e-02 5.11e-01 5.26e-01 1.0e-03 400 1.36e+01 1.32e+01 1.07e-02 2.07e-03 4.29e-01 4.19e-01 1.0e-03 500 1.07e+01 1.05e+01 2.45e-03 4.11e-03 3.38e-01 3.31e-01 1.0e-03

如圖 5 所示,訓(xùn)練誤差隨著訓(xùn)練步驟單調(diào)減少。訓(xùn)練后的模型在測(cè)試數(shù)據(jù)集上進(jìn)行了測(cè)試,并與 AIMD 仿真結(jié)果進(jìn)行了比較。測(cè)試命令是:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp test -m frozen_model.pb -s deepmd_data/4/ -n 200 -d detail.out

圖 5 有步驟的訓(xùn)練損失

結(jié)果如圖 6 所示。

圖 6 用 AIMD 能量和力測(cè)試訓(xùn)練后的 DP 模型的預(yù)測(cè)精度。

模型導(dǎo)出和壓縮

模型訓(xùn)練完成后,生成一個(gè)凍結(jié)模型,用于 MD 仿真中的推理。從檢查點(diǎn)保存神經(jīng)網(wǎng)絡(luò)的過程稱為“凍結(jié)”模型:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp freeze -o graphene.pb

生成凍結(jié)模型后,可以在不犧牲精度的情況下對(duì)模型進(jìn)行壓縮;在 MD 中大大加快推理性能的同時(shí),根據(jù)仿真和訓(xùn)練設(shè)置,模型壓縮可以將性能提高 10 倍,在 GPU 上運(yùn)行時(shí)將內(nèi)存消耗減少 20 倍。

可以使用以下命令壓縮凍結(jié)模型,-i表示凍結(jié)模型,-o表示壓縮模型的輸出名稱:

$ singularity exec --nv docker://nvcr.io/hpc/deepmd-kit:v2.0.3 dp compress -i graphene.pb -o graphene-compress.pb

LAMMPS 中的模型部署

在 LAMMPS 中實(shí)現(xiàn)了一種新的配對(duì)方式,以便在前面的步驟中部署經(jīng)過訓(xùn)練的神經(jīng)網(wǎng)絡(luò)。對(duì)于熟悉 LAMMPS 工作流程的用戶,只需進(jìn)行最小的更改即可切換到深度潛力。例如,具有 Tersoff 電位的傳統(tǒng) LAMMPS 輸入具有以下電位設(shè)置:

pair_style tersoff
pair_coeff * * BNC.tersoff C

若要使用深電位,請(qǐng)將以前的線路替換為:

pair_style deepmd graphene-compress.pb
pair_coeff * *

輸入文件中的pair_style命令使用 DeePMD 模型來描述石墨烯系統(tǒng)中的原子相互作用。

  • graphene-compress.pb文件表示用于推斷的凍結(jié)和壓縮模型。
  • MD 模擬中的石墨烯系統(tǒng)包含 1560 個(gè)原子。
  • 周期性邊界條件應(yīng)用于橫向xy方向,自由邊界應(yīng)用于z方向。
  • 時(shí)間步長(zhǎng)設(shè)置為 1 fs 。
  • 將系統(tǒng)置于溫度為 300 K 的 NVT 系綜下進(jìn)行松弛,這與 AIMD 設(shè)置一致。

NVT 松弛后的系統(tǒng)配置如圖 7 所示??梢杂^察到,深勢(shì)可以描述原子結(jié)構(gòu),在橫平面方向上有小的波紋。在 10ps NVT 松弛后,將系統(tǒng)置于 NVE 系綜下以檢查系統(tǒng)穩(wěn)定性。

圖 7 深勢(shì)弛豫后石墨烯體系的原子構(gòu)型。

系統(tǒng)溫度如圖 8 所示。

圖 8 NVT 和 NVE 組合下的系統(tǒng)溫度。深勢(shì)驅(qū)動(dòng)的分子動(dòng)力學(xué)系統(tǒng)在弛豫后非常穩(wěn)定。

為了驗(yàn)證經(jīng)過訓(xùn)練的 DP 模型的準(zhǔn)確性,從 AIMD 、 DP 和 Tersoff 計(jì)算出的徑向分布函數(shù)( RDF )如圖 9 所示。 DP 模型生成的 RDF 與 AIMD 模型非常接近,這表明 DP 模型可以很好地描述石墨烯的晶體結(jié)構(gòu)。

圖 9 。分別用 AIMD 、 DP 和 Tersoff 勢(shì)計(jì)算徑向分布函數(shù)??梢杂^察到, DP 計(jì)算的 RDF 與 AIMD 非常接近。

結(jié)論

這篇文章展示了在給定條件下石墨烯的一個(gè)簡(jiǎn)單案例研究。 DeePMD-kit 軟件包簡(jiǎn)化了從 AIMD 到經(jīng)典 MD 的工作流程,具有很大的潛力,提供了以下關(guān)鍵優(yōu)勢(shì):

TensorFlow 框架中實(shí)現(xiàn)高度自動(dòng)化和高效的工作流。

使用流行的 DFT 和 MD 包(如 VASP 、 QE 和 LAMMPS )的 API 。

廣泛應(yīng)用于有機(jī)分子、金屬、半導(dǎo)體、絕緣體等。

具有 MPI 和[ZFBB]支持的高效 HPC 代碼。

模塊化,便于其他深度學(xué)習(xí)潛在模型采用。

此外,使用 NGC 目錄中的 GPU – 優(yōu)化容器簡(jiǎn)化并加速了整個(gè)工作流程,省去了安裝和配置軟件的步驟。

關(guān)于作者

Jingchao Zhang 是英偉達(dá)高等教育和研究團(tuán)隊(duì)的資深解決方案設(shè)計(jì)師。他也是佛羅里達(dá)大學(xué) Nvidia AI 技術(shù)中心( NVAITC )的常駐科學(xué)家。他獲得了博士學(xué)位。愛荷華州立大學(xué)機(jī)械工程專業(yè)。在加入 NVIDIA 之前,他在研究計(jì)算領(lǐng)域工作了 8 年。他的研究興趣包括計(jì)算材料科學(xué)和機(jī)器學(xué)習(xí)。

Yifan Li 是普林斯頓大學(xué)化學(xué)系一年級(jí)研究生。伊凡于 2020 年 7 月在北京大學(xué)獲得化學(xué)學(xué)士學(xué)位。他的研究興趣包括分子動(dòng)力學(xué)中的機(jī)器學(xué)習(xí)力場(chǎng)、核量子動(dòng)力學(xué)模擬和自動(dòng)區(qū)分量子化學(xué)程序。

Akhil Docca 是 NVIDIA NGC 的高級(jí)產(chǎn)品營(yíng)銷經(jīng)理,專注于 HPC 和 DL 容器。 Akhil 擁有加州大學(xué)洛杉磯分校安德森商學(xué)院工商管理碩士學(xué)位,圣何塞州立大學(xué)機(jī)械工程學(xué)士學(xué)位。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4937

    瀏覽量

    131179
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    48987

    瀏覽量

    249117
  • 編譯器
    +關(guān)注

    關(guān)注

    1

    文章

    1661

    瀏覽量

    50184
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對(duì)深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對(duì)輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)據(jù)中所要表示的規(guī)律。從原理上看,使用
    的頭像 發(fā)表于 04-02 18:21 ?873次閱讀

    軍事應(yīng)用深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢(shì),導(dǎo)致戰(zhàn)爭(zhēng)形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?529次閱讀

    針對(duì)步進(jìn)電機(jī)的專用驅(qū)動(dòng)方案MD400系列電調(diào)

    MD400系列電調(diào)是針對(duì)步進(jìn)電機(jī)的專用驅(qū)動(dòng)方案,自帶磁編碼器芯片,采用FOC方式驅(qū)動(dòng)步進(jìn)電機(jī),支持欠壓、過壓、過流和堵轉(zhuǎn)保護(hù)等功能,支持UART、RS-485、CAN通信控制和脈沖方式控制,支持標(biāo)準(zhǔn)
    的頭像 發(fā)表于 01-23 14:13 ?528次閱讀
    針對(duì)步進(jìn)電機(jī)的專用<b class='flag-5'>驅(qū)動(dòng)</b>方案<b class='flag-5'>MD</b>400系列電調(diào)

    AI自動(dòng)化生產(chǎn):深度學(xué)習(xí)在質(zhì)量控制的應(yīng)用

    生產(chǎn)效率、保證產(chǎn)品質(zhì)量方面展現(xiàn)出非凡的能力。阿丘科技「AI干貨補(bǔ)給站」推出《AI自動(dòng)化生產(chǎn):深度學(xué)習(xí)在質(zhì)量控制的應(yīng)用》文章,探討深度學(xué)習(xí)
    的頭像 發(fā)表于 01-17 16:35 ?687次閱讀
    AI自動(dòng)化生產(chǎn):<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>在質(zhì)量控制<b class='flag-5'>中</b>的應(yīng)用

    GPU在深度學(xué)習(xí)的應(yīng)用 GPUs在圖形設(shè)計(jì)的作用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心部分,已經(jīng)成為推動(dòng)技術(shù)進(jìn)步的重要力量。GPU(圖形處理單元)在深度學(xué)習(xí)扮演著至關(guān)重要的角色,
    的頭像 發(fā)表于 11-19 10:55 ?1609次閱讀

    深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語音識(shí)別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)
    的頭像 發(fā)表于 11-15 14:52 ?837次閱讀

    NPU在深度學(xué)習(xí)的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度
    的頭像 發(fā)表于 11-14 15:17 ?1892次閱讀

    pcie在深度學(xué)習(xí)的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計(jì)算能力來訓(xùn)練。傳統(tǒng)的CPU計(jì)算資源有限,難以滿足深度學(xué)習(xí)的需求。因此,GPU(圖形處理單元)和TPU(張量處理單元)等專用硬件應(yīng)運(yùn)而生,它們通過
    的頭像 發(fā)表于 11-13 10:39 ?1337次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是深度
    的頭像 發(fā)表于 10-27 11:13 ?1330次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,它通過
    的頭像 發(fā)表于 10-27 10:57 ?1051次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2870次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    的發(fā)展前景較為廣闊,但也面臨一些挑戰(zhàn)。以下是一些關(guān)于 FPGA 在深度學(xué)習(xí)應(yīng)用前景的觀點(diǎn),僅供參考: ? 優(yōu)勢(shì)方面: ? 高度定制化的計(jì)算架構(gòu):FPGA 可以根據(jù)深度
    發(fā)表于 09-27 20:53

    深度學(xué)習(xí)算法在集成電路測(cè)試的應(yīng)用

    隨著半導(dǎo)體技術(shù)的快速發(fā)展,集成電路(IC)的復(fù)雜性和集成度不斷提高,對(duì)測(cè)試技術(shù)的要求也日益增加。深度學(xué)習(xí)算法作為一種強(qiáng)大的數(shù)據(jù)處理和模式識(shí)別工具,在集成電路測(cè)試領(lǐng)域展現(xiàn)出了巨大的應(yīng)用潛力。本文將從深度
    的頭像 發(fā)表于 07-15 09:48 ?1845次閱讀

    利用Matlab函數(shù)實(shí)現(xiàn)深度學(xué)習(xí)算法

    在Matlab實(shí)現(xiàn)深度學(xué)習(xí)算法是一個(gè)復(fù)雜但強(qiáng)大的過程,可以應(yīng)用于各種領(lǐng)域,如圖像識(shí)別、自然語言處理、時(shí)間序列預(yù)測(cè)等。這里,我將概述一個(gè)基本的流程,包括環(huán)境設(shè)置、數(shù)據(jù)準(zhǔn)備、模型設(shè)計(jì)、訓(xùn)練過程、以及測(cè)試和評(píng)估,并提供一個(gè)基于Mat
    的頭像 發(fā)表于 07-14 14:21 ?3617次閱讀

    深度學(xué)習(xí)反卷積的原理和應(yīng)用

    深度學(xué)習(xí)的廣闊領(lǐng)域中,反卷積(Deconvolution,也稱作Transposed Convolution)作為一種重要的圖像上采樣技術(shù),扮演著至關(guān)重要的角色。特別是在計(jì)算機(jī)視覺任務(wù),如圖
    的頭像 發(fā)表于 07-14 10:22 ?4792次閱讀