chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

深度學習與圖神經(jīng)網(wǎng)絡學習分享:Transformer

恬靜簡樸1 ? 來源:恬靜簡樸1 ? 作者:恬靜簡樸1 ? 2022-09-22 10:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在過去的幾年中,神經(jīng)網(wǎng)絡的興起與應用成功推動了模式識別和數(shù)據(jù)挖掘的研究。許多曾經(jīng)嚴重依賴于手工提取特征的機器學習任務(如目標檢測、機器翻譯和語音識別),如今都已被各種端到端的深度學習范式(例如卷積神經(jīng)網(wǎng)絡(CNN)、長短期記憶(LSTM)和自動編碼器)徹底改變了。曾有學者將本次人工智能浪潮的興起歸因于三個條件,分別是:

·計算資源的快速發(fā)展(如GPU

·大量訓練數(shù)據(jù)的可用性

·深度學習從歐氏空間數(shù)據(jù)中提取潛在特征的有效性

盡管傳統(tǒng)的深度學習方法被應用在提取歐氏空間數(shù)據(jù)的特征方面取得了巨大的成功,但許多實際應用場景中的數(shù)據(jù)是從非歐式空間生成的,傳統(tǒng)的深度學習方法在處理非歐式空間數(shù)據(jù)上的表現(xiàn)卻仍難以使人滿意。例如,在電子商務中,一個基于圖(Graph)的學習系統(tǒng)能夠利用用戶和產(chǎn)品之間的交互來做出非常準確的推薦,但圖的復雜性使得現(xiàn)有的深度學習算法在處理時面臨著巨大的挑戰(zhàn)。這是因為圖是不規(guī)則的,每個圖都有一個大小可變的無序節(jié)點,圖中的每個節(jié)點都有不同數(shù)量的相鄰節(jié)點,導致一些重要的操作(例如卷積)在圖像(Image)上很容易計算,但不再適合直接用于圖。此外,現(xiàn)有深度學習算法的一個核心假設是數(shù)據(jù)樣本之間彼此獨立。然而,對于圖來說,情況并非如此,圖中的每個數(shù)據(jù)樣本(節(jié)點)都會有邊與圖中其他實數(shù)據(jù)樣本(節(jié)點)相關,這些信息可用于捕獲實例之間的相互依賴關系。

近年來,人們對深度學習方法在圖上的擴展越來越感興趣。在多方因素的成功推動下,研究人員借鑒了卷積網(wǎng)絡、循環(huán)網(wǎng)絡和深度自動編碼器的思想,定義和設計了用于處理圖數(shù)據(jù)的神經(jīng)網(wǎng)絡結構,由此一個新的研究熱點——“圖神經(jīng)網(wǎng)絡(Graph Neural Networks,GNN)”應運而生

近期看了關于Transformer的信息

來簡述一下Transformer結構

Transformer 整體結構

首先介紹 Transformer 的整體結構,下圖是 Transformer 用于中英文翻譯的整體結構:

poYBAGMrxYSAXIODAAIyxpHrbrk430.png

Transformer 的整體結構,左圖Encoder和右圖Decoder

可以看到Transformer 由 Encoder 和 Decoder 兩個部分組成,Encoder 和 Decoder 都包含 6 個 block。Transformer 的工作流程大體如下:

第一步:獲取輸入句子的每一個單詞的表示向量XX由單詞的 Embedding(Embedding就是從原始數(shù)據(jù)提取出來的Feature) 和單詞位置的 Embedding 相加得到。

pYYBAGMrxYWAcezKAAFvIMTglvY986.png

Transformer 的輸入表示

第二步:將得到的單詞表示向量矩陣 (如上圖所示,每一行是一個單詞的表示x) 傳入 Encoder 中,經(jīng)過 6 個 Encoder block 后可以得到句子所有單詞的編碼信息矩陣C,如下圖。單詞向量矩陣用Xn×d表示, n 是句子中單詞個數(shù),d 是表示向量的維度 (論文中 d=512)。每一個 Encoder block 輸出的矩陣維度與輸入完全一致。

poYBAGMrxYeATcedAALbxb67lzs473.png

Transformer Encoder 編碼句子信息

第三步:將 Encoder 輸出的編碼信息矩陣C傳遞到 Decoder 中,Decoder 依次會根據(jù)當前翻譯過的單詞 1~ i 翻譯下一個單詞 i+1,如下圖所示。在使用的過程中,翻譯到單詞 i+1 的時候需要通過Mask (掩蓋)操作遮蓋住 i+1 之后的單詞。

Transofrmer Decoder 預測

上圖 Decoder 接收了 Encoder 的編碼矩陣C,然后首先輸入一個翻譯開始符 "",預測第一個單詞 "I";然后輸入翻譯開始符 "" 和單詞 "I",預測單詞 "have",以此類推。這是 Transformer 使用時候的大致流程。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    NMSIS神經(jīng)網(wǎng)絡庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    【「AI芯片:科技探索與AGI愿景」閱讀體驗】+第二章 實現(xiàn)深度學習AI芯片的創(chuàng)新方法與架構

    上來先來幾個專有名詞: ANN:人工神經(jīng)網(wǎng)絡 SNN:脈沖神經(jīng)網(wǎng)絡DNN:深度神經(jīng)網(wǎng)絡 神經(jīng)網(wǎng)絡設計靈感都是來自人類的大腦結構,都是由
    發(fā)表于 09-12 17:30

    如何在機器視覺中部署深度學習神經(jīng)網(wǎng)絡

    1:基于深度學習的目標檢測可定位已訓練的目標類別,并通過矩形框(邊界框)對其進行標識。 在討論人工智能(AI)或深度學習時,經(jīng)常會出現(xiàn)“
    的頭像 發(fā)表于 09-10 17:38 ?693次閱讀
    如何在機器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學習</b><b class='flag-5'>神經(jīng)網(wǎng)絡</b>

    自動駕駛中Transformer大模型會取代深度學習嗎?

    [首發(fā)于智駕最前沿微信公眾號]近年來,隨著ChatGPT、Claude、文心一言等大語言模型在生成文本、對話交互等領域的驚艷表現(xiàn),“Transformer架構是否正在取代傳統(tǒng)深度學習”這一話題一直被
    的頭像 發(fā)表于 08-13 09:15 ?3917次閱讀
    自動駕駛中<b class='flag-5'>Transformer</b>大模型會取代<b class='flag-5'>深度</b><b class='flag-5'>學習</b>嗎?

    嵌入式AI技術之深度學習:數(shù)據(jù)樣本預處理過程中使用合適的特征變換對深度學習的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡實現(xiàn)機器學習網(wǎng)絡的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡構成深度
    的頭像 發(fā)表于 04-02 18:21 ?1284次閱讀

    BP神經(jīng)網(wǎng)絡的調(diào)參技巧與建議

    BP神經(jīng)網(wǎng)絡的調(diào)參是一個復雜且關鍵的過程,涉及多個超參數(shù)的優(yōu)化和調(diào)整。以下是一些主要的調(diào)參技巧與建議: 一、學習率(Learning Rate) 重要性 :學習率是BP神經(jīng)網(wǎng)絡中最重要
    的頭像 發(fā)表于 02-12 16:38 ?1458次閱讀

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡與卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 02-12 15:53 ?1307次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡學習

    優(yōu)化BP神經(jīng)網(wǎng)絡學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡學習率的方法: 一、理解學習率的重要性
    的頭像 發(fā)表于 02-12 15:51 ?1424次閱讀

    BP神經(jīng)網(wǎng)絡的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1586次閱讀

    什么是BP神經(jīng)網(wǎng)絡的反向傳播算法

    神經(jīng)網(wǎng)絡(即反向傳播神經(jīng)網(wǎng)絡)的核心,它建立在梯度下降法的基礎上,是一種適合于多層神經(jīng)元網(wǎng)絡學習算法。該算法通過計算每層網(wǎng)絡的誤差,并將這
    的頭像 發(fā)表于 02-12 15:18 ?1277次閱讀

    BP神經(jīng)網(wǎng)絡深度學習的關系

    BP神經(jīng)網(wǎng)絡深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播
    的頭像 發(fā)表于 02-12 15:15 ?1341次閱讀

    BP神經(jīng)網(wǎng)絡在圖像識別中的應用

    BP神經(jīng)網(wǎng)絡在圖像識別中發(fā)揮著重要作用,其多層結構使得網(wǎng)絡能夠學習到復雜的特征表達,適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡在圖像識別中應用的分析: 一、BP
    的頭像 發(fā)表于 02-12 15:12 ?1188次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡的構建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經(jīng)網(wǎng)絡。 神經(jīng)網(wǎng)絡由多個
    的頭像 發(fā)表于 01-23 13:52 ?842次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?2249次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    傳統(tǒng)機器學習方法和應用指導

    用于開發(fā)生物學數(shù)據(jù)的機器學習方法。盡管深度學習(一般指神經(jīng)網(wǎng)絡算法)是一個強大的工具,目前也非常流行,但它的應用領域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1982次閱讀
    傳統(tǒng)機器<b class='flag-5'>學習</b>方法和應用指導