chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一種新穎的標簽驅(qū)動去噪框架(LDF)

深度學(xué)習(xí)自然語言處理 ? 來源:南大NLP ? 作者:趙飛、沈禹辰 ? 2022-11-01 10:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

01

研究動機

方面類別檢測(簡稱ACD)是細粒度情感分析的一個重要子任務(wù),旨在從一組預(yù)定義的方面類別中檢測出評論句子中提到的方面類別。例如,給定句子”雖然房間很貴,但是服務(wù)很好.”,ACD 的任務(wù)是從句子中識別出兩個方面類別,即”服務(wù)”和”價格”。顯然,ACD 屬于多標簽分類問題。

最近,隨著深度學(xué)習(xí)的發(fā)展,研究者們提出了大量用于 ACD 任務(wù)的神經(jīng)網(wǎng)絡(luò)模型[1, 2, 3]。所有這些模型的性能在很大程度上依賴于足夠的標記數(shù)據(jù)。但是,ACD 任務(wù)中方面類別的注釋非常昂貴。有限的標記數(shù)據(jù)嚴重限制了神經(jīng)網(wǎng)絡(luò)模型的有效性。為了緩解這個問題,Hu等人[4]參考了小樣本學(xué)習(xí) (FSL) 的思路[5, 6,7 ,8],將 ACD任務(wù)形式化為小樣本學(xué)習(xí)問題 (FS-ACD),即使用少量的監(jiān)督數(shù)據(jù)來判評論句子所屬的方面類別。

表1: 3-way 2-shot 元任務(wù)的示例

810bab8e-591e-11ed-a3b6-dac502259ad0.png

FS-ACD 遵循元學(xué)習(xí)范式[9],構(gòu)建了一個 N-way K-shot 的元任務(wù)集合。表1顯示了一個 3-way 2-shot 的元任務(wù),它由一個支持集和一個查詢集組成。支持集隨機采樣三個類(即方面類別),每個類隨機選擇兩個句子(即實例)。元任務(wù)旨在借助少量標記的支持集來推斷查詢集中句子所屬的方面類別。

通過在訓(xùn)練階段對不同的元任務(wù)進行采樣,F(xiàn)S-ACD 可以在少樣本場景中學(xué)習(xí)到很好的泛化能力,并且在測試階段表現(xiàn)良好。為了執(zhí)行 FS-ACD 任務(wù),Hu等人[4]提出了一個基于注意力的原型網(wǎng)絡(luò)Proto-AWATT。它首先利用注意力機制從支持集中的方面類別對應(yīng)的句子中提取關(guān)鍵字,然后將它們聚合為證據(jù)為每個方面類別生成一個原型。

然后,查詢集利用原型生成相應(yīng)的查詢表示。最后,通過測量每個原型表示與相應(yīng)查詢表示之間的距離來進行類別預(yù)測。

盡管取得了很好的效果,但是我們發(fā)現(xiàn)噪聲仍然是 FS-ACD 任務(wù)的關(guān)鍵問題。原因來自兩個方面:一方面,由于缺乏足夠的監(jiān)督數(shù)據(jù),以前的模型很容易捕捉到與當(dāng)前方面類別無關(guān)的噪聲詞,這在很大程度上影響了生成原型的質(zhì)量。如圖1所示,以方面類別 food_food_meat_burger的原型為例。

我們根據(jù)Proto-AWATT 的注意力權(quán)重突出顯示其前 10 個單詞。由于缺乏足夠的監(jiān)督數(shù)據(jù),我們觀察到模型傾向于關(guān)注那些常見但嘈雜的單詞,例如“a”、“the”、“my”。這些嘈雜的詞無法為每個方面生成具有代表性的原型,從而導(dǎo)致性能打折。另一方面,語義上接近的方面類別通常會產(chǎn)生相似的原型,這些語義接近的原型互為噪音,極大地混淆了分類器。

據(jù)統(tǒng)計,數(shù)據(jù)集中近 25% 的方面類別對具有相似的語義,例如表 1 中的 food_food_meat_burger 和 food_mealtype_lunch。顯然,這些語義相近的方面類別生成的原型會相互干擾并嚴重混淆 FS-ACD的檢測結(jié)果。

8119e8ca-591e-11ed-a3b6-dac502259ad0.png

圖1:根據(jù) Proto-AWATT 的注意力權(quán)重可視化方面類別 food_food_meat_burger 原型的前 10 個單詞

為了解決上述問題,我們?yōu)?FS-ACD 任務(wù)提出了一種新穎的標簽驅(qū)動去噪框架(LDF)。具體來說,對于第一個問題,方面類別的標簽文本包含豐富的語義描述方面的概念和范圍,例如方面類別restaurant_location的標簽文本“restaurant“和”location”,它們可以幫助注意力機制更好地捕捉與標簽相關(guān)的單詞。

因此,我們提出了一種標簽引導(dǎo)的注意力策略來過濾噪聲詞并引導(dǎo) LDF 產(chǎn)生更好的方面原型。鑒于第二個問題,我們提出了一種有效的標簽加權(quán)對比損失,它將支持集的類間關(guān)系合并到對比學(xué)習(xí)函數(shù)中,從而擴大了相似原型之間的距離。

02

貢獻

1、據(jù)我們所知,我們是第一個利用方面類別的標簽信息來解決FS-ACD任務(wù)中噪聲問題的工作;

2、我們提出了一種新穎的標簽驅(qū)動去噪框架(LDF),它包含一個標簽引導(dǎo)的注意力策略來過濾嘈雜的單詞并為每個方面生成一個有代表性的原型,以及一個標簽加權(quán)的對比損失來避免為語義接近的方面類別生成相似的原型;

3、LDF框架具有良好的兼容性,可以很容易地擴展到現(xiàn)有模型。在這項工作中,我們將其應(yīng)用于兩個最新的FS-ACD模型,Proto-HATT[8]和Proto-AWATT[4]。三個基準數(shù)據(jù)集的實驗結(jié)果證明了我們框架的優(yōu)越性。

03

背景

在這項工作中,我們基于 Proto-AWATT[4]和 Proto-HATT[8]模型抽象了一個通用的架構(gòu),它們都實現(xiàn)了令人滿意的性能,因此被選為我們工作的基礎(chǔ)。

給定一個包含l個單詞的實例,我們首先通過查找嵌入表將其映射到單詞序列中。然后,我們使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)將單詞序列編碼為上下文表示。接下來,注意力層為實例中的每個單詞分配一個權(quán)重。最終實例表示由下式給出:

81367e9a-591e-11ed-a3b6-dac502259ad0.png

之后,我們聚合類n的所有實例表示來生成原型表示:

814ba9aa-591e-11ed-a3b6-dac502259ad0.png

在處理了支持集中的所有類之后,我們得到了N個原型表示。類似地,對于查詢實例,我們首先利用注意力機制生成N個原型特定的查詢表示。之后,我們計算每個原型與對應(yīng)的原型特定查詢表示之間的歐幾里得距離(ED)。最后,我們對負歐幾里得距離進行歸一化以獲得原型的排名,并使用閾值來選擇方面類別:

815d4d72-591e-11ed-a3b6-dac502259ad0.png

最終的訓(xùn)練目標是均方誤差(MSE)損失:

817f846e-591e-11ed-a3b6-dac502259ad0.png

04

解決方案

圖 2 展示了 LDF 的整體架構(gòu),其中包含兩個組件:標簽引導(dǎo)的注意力策略和標簽加權(quán)的對比損失。在標簽信息的幫助下,前者可以更好地關(guān)注與方面類別相關(guān)的單詞,從而為每個方面生成更準確的原型,后者利用支持集的類間關(guān)系避免生成相似的原型。

81975184-591e-11ed-a3b6-dac502259ad0.png

圖2:標簽驅(qū)動去噪框架(LDF)的整體架構(gòu)

3.1 標簽引導(dǎo)的注意力策略

由于缺乏足夠的監(jiān)督數(shù)據(jù),公式1中的注意力權(quán)重通常會關(guān)注一些與當(dāng)前類別無關(guān)的噪聲詞,導(dǎo)致原型變得不具有代表性。直覺上來說,每個類的標簽文本都包含豐富的語義,可以為捕獲方面類別相關(guān)的單詞提供指導(dǎo)。因此,我們利用標簽信息來解決上述問題并提出標簽引導(dǎo)的注意力策略。

具體來說,我們首先計算標簽文本與實例中每個單詞的語義相似度來定位每個類的關(guān)鍵詞:

81b92fa2-591e-11ed-a3b6-dac502259ad0.png

在標簽信息的約束下,相似度權(quán)重傾向于關(guān)注與標簽文本高度相關(guān)的少量單詞,這樣可能會忽略其它有信息量的詞。因此,我們將其作為注意力權(quán)重的補充,以生成更全面、更準確的注意力權(quán)重:

81d4502a-591e-11ed-a3b6-dac502259ad0.png

然后,為了重新獲得注意力分布,注意力權(quán)重被重新歸一化為:

81e08c32-591e-11ed-a3b6-dac502259ad0.png

最后,我們將方程1中的注意力權(quán)重替換為方程8中新的注意力權(quán)重,從而獲得支持集中每個類的代表性原型。

3.2 標簽加權(quán)的對比損失

如前所述,語義上接近的方面類別通常會在支持集中生成相似的原型,它們互為噪聲并嚴重混淆分類器。

直觀地說,一種可行且自然的方法是利用有監(jiān)督對比學(xué)習(xí),它可以將不同類別的原型推開如下:

81f3f650-591e-11ed-a3b6-dac502259ad0.png

然而,有監(jiān)督對比學(xué)習(xí)并不能很好地解決我們的問題,因為它在負集中平等地對待不同的原型,而我們的目標是鼓勵越相似的原型相距越遠。

例如,“food_food_meat_burger”在語義上比“room_bed”更接近“food_mealtype_lunch”。因此,“food_food_meat_burger”在負集中應(yīng)該比“room_bed”更遠離“food_mealtype_lunch”。

為了實現(xiàn)這一目標,我們再次利用標簽信息并提出將類間關(guān)系合并到有監(jiān)督的對比學(xué)習(xí)中,以自適應(yīng)地區(qū)分負集中的相似原型:

8203e90c-591e-11ed-a3b6-dac502259ad0.png

其中 wmn表示負集中不同方面類別之間的 cos 相似度,計算如下:

822317aa-591e-11ed-a3b6-dac502259ad0.png

在標簽加權(quán)的對比損失模塊中,最終的損失函數(shù)為:

823755d0-591e-11ed-a3b6-dac502259ad0.png

05

實驗

5.1 實驗設(shè)置

我們在三個公開的數(shù)據(jù)集FewAsp(single)、FewAsp(multi)和FewAsp上進行了實驗,它們共享相同的100個方面類別,其中64個方面用于訓(xùn)練,16個方面用于驗證,20個方面用于測試。我們使用 Macro-F1 和 AUC 分數(shù)作為評估指標,并且 5-way 設(shè)置和 10-way 設(shè)置中的閾值分別設(shè)置為0.3和0.2。

為了驗證LDF框架的優(yōu)越性,我們選擇了兩個性能最好的主流模型作為我們工作的基礎(chǔ),即Proto-HATT[8]和Proto-AWATT[4]。換句話說,我們將LDF集成到Proto-HATT和Proto-AWATT中,得到最終模型LDF-HATT和LDF-AWATT。

5.2 主實驗

從表2可以看出,LDF-HATT和LDF-AWATT在三個數(shù)據(jù)集上的性能始終優(yōu)于其基礎(chǔ)模型。值得一提的是LDF-HATT在Macro-F1和AUC分數(shù)上最多獲得了5.62%和1.32%的提升。相比之下,LDF-AWATT最多比Proto-AWATT高3.17%和1.30%。這些結(jié)果表明我們的框架具有良好的兼容性。

事實上,LDF-AWATT的Macro-F1在大多數(shù)情況下提高了大約2%,而LDF-HATT的Macro-F1平均提高了大約3%。這與我們的預(yù)期一致,因為原始Proto-AWATT具有更強大的性能。LDF-HATT和LDF-AWATT在FewAsp(multi)數(shù)據(jù)集上比在FewAsp(single)數(shù)據(jù)集上表現(xiàn)更好。

一個可能的原因是FewAsp(multi)數(shù)據(jù)集中的每個類包含更多的實例,這使得LDF-HATT和LDF-AWATT在多標簽分類中可以生成更準確的原型。

表2:主實驗結(jié)果

824e320a-591e-11ed-a3b6-dac502259ad0.png

5.3 消融實驗

在不失一般性的情況下,我們選擇 LDF-AWATT模型進行消融實驗,以研究LDF中單個模塊對模型整體效果的影響。標簽引導(dǎo)的注意力策略簡稱LAS,-標簽加權(quán)的對比損失簡稱LCL,有監(jiān)督的對比學(xué)習(xí)簡稱SCL。根據(jù)表3報告的結(jié)果,我們可以觀察到以下幾點:

表3:消融實驗結(jié)果

8268b300-591e-11ed-a3b6-dac502259ad0.png

1、與基礎(chǔ)模型Proto-AWATT相比, Proto-AWATT+LAS在三個數(shù)據(jù)集上取得了具有競爭力的性能,這驗證了利用標簽信息為每個類生成具有代表性原型的合理性;

2、將 LCL 集成到 Proto-AWATT+LAS后,LDF-AWATT 實現(xiàn)了 state-of-the-art 的性能,這表明 LCL 有利于區(qū)分相似的原型;

3、LAS 比 LCL 更有效。一個可能的原因是注意力機制是生成原型的核心因素。因此,它對我們的框架貢獻更大;

4、Proto-AWATT+SCL 在FewAsp 數(shù)據(jù)集上的性能略好于Proto-AWATT,但它們的結(jié)果遠低于 Proto-AWATT+LCL,這些結(jié)果進一步凸顯了LCL的有效性;

5、將類間關(guān)系集成到Proto-AWATT+SCL后,Proto-AWATT+LCL取得了更好的性能,這表明類間關(guān)系在區(qū)分相似原型方面起著至關(guān)重要的作用;

06

案例分析

為了更好地理解我們框架的優(yōu)勢,我們從FewAsp 數(shù)據(jù)集中選擇一些樣本進行案例研究。具體來說,我們隨機抽取 5 個類,然后為這5個類抽取 50 次 5-way 5-shot 元任務(wù)。最后對于每個類,我們得到 50 個原型向量。

82a10afc-591e-11ed-a3b6-dac502259ad0.png

圖4:可視化Proto-AWATT、Proto-AWATT+LAS 和 LDF-AWATT 原型表示

6.1 Proto-AWATT vs. Proto-AWATT+LAS

如圖4(a) 和圖4(b) 所示,我們可以看到Proto-AWATT+LAS 學(xué)習(xí)到的每個類的原型表示顯然比Proto-AWATT 更集中。這些觀察表明Proto-AWATT+LAS確實可以為每個類生成更準確的原型。

6.2 Proto-AWATT+LAS vs. LDF-AWATT

如圖4(b)和圖4(c)所示,將LCL集成到Proto-AWATT+LAS后,LDF-AWATT學(xué)習(xí)到的food_mealtype_lunch和food_food_meat_burger的原型表示比Proto-AWATT+LAS更分離。這表明LCL確實可以區(qū)分相似的原型。

07

錯誤分析

為了分析我們框架的局限性,我們通過LDF-AWATT 從FewAsp 數(shù)據(jù)集中隨機抽取 100 個錯誤案例,并將它們大致分為兩類。表4顯示了每個類別的比例和一些代表性示例。主要類別是”Complex”,主要包括需要深入理解的示例。

如示例(1)所示,與 restaurant_location 相關(guān)的單詞片段“Chandler Downtown Serrano”在訓(xùn)練集中出現(xiàn)的次數(shù)不超過 5 次,這些表達的低頻率使得我們的模型難以捕捉到它們的模式,因此給出正確的預(yù)測確實具有挑戰(zhàn)性。

第二類是”No obvious clues”,主要包括信息不足的例子。如示例(2)所示,句子很短,無法提供足夠的信息來預(yù)測真實標簽。

表4:LDF-AWATT模型的錯誤樣例

82aec7d2-591e-11ed-a3b6-dac502259ad0.png

08

總結(jié)

在本文中,我們提出了一種新穎的標簽驅(qū)動去噪框架(LDF)來緩解 FS-ACD 任務(wù)的噪聲問題。具體來說,我們設(shè)計了兩個合理的方法:標簽引導(dǎo)的注意力策略和標簽加權(quán)的對比損失,旨在為每個類生成更好的原型并區(qū)分相似的原型。大量實驗的結(jié)果表明,我們的框架 LDF 與其他最先進的方法相比實現(xiàn)了更好的性能。

論文鏈接:

https://arxiv.org/pdf/2210.04220.pdf

代碼鏈接:

https://github.com/1429904852/LDF






審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • ACD
    ACD
    +關(guān)注

    關(guān)注

    0

    文章

    13

    瀏覽量

    11513
  • 分類器
    +關(guān)注

    關(guān)注

    0

    文章

    153

    瀏覽量

    13691
  • 卷積神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    4

    文章

    371

    瀏覽量

    12765

原文標題:EMNLP'22 Findings | 用于多標簽少樣本方面類別檢測的標簽驅(qū)動去噪框架

文章出處:【微信號:zenRRan,微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    一種適用于動態(tài)環(huán)境的自適應(yīng)先驗場景-對象SLAM框架

    由于傳統(tǒng)視覺SLAM在動態(tài)場景中容易會出現(xiàn)嚴重的定位漂移,本文提出了一種新穎的基于場景-對象的可靠性評估框架,該框架通過當(dāng)前幀質(zhì)量指標以及相對于可靠參考幀的場景變化,全面評估SLAM的
    的頭像 發(fā)表于 08-19 14:17 ?677次閱讀
    <b class='flag-5'>一種</b>適用于動態(tài)環(huán)境的自適應(yīng)先驗場景-對象SLAM<b class='flag-5'>框架</b>

    PCB抗金屬標簽的應(yīng)用

    PCB抗金屬標簽一種專門設(shè)計用于在金屬表面或靠近金屬環(huán)境使用的RFID標簽。它通過特殊的天線設(shè)計和材料選擇,克服了傳統(tǒng)RFID標簽在金屬環(huán)境中無法正常工作的難題。PCB抗金屬
    的頭像 發(fā)表于 08-06 16:11 ?574次閱讀
    PCB抗金屬<b class='flag-5'>標簽</b>的應(yīng)用

    哪些場景要使用到RFID標簽打印機?RFID標簽打印機般多少錢?

    RFID標簽打印機是一種將射頻識別技術(shù)與打印技術(shù)相結(jié)合的設(shè)備,可實現(xiàn)對RFID標簽的信息錄入與表面信息打印,廣泛應(yīng)用于多個領(lǐng)域。以下是些常見的應(yīng)用場景:1、物流管理:在貨物的倉儲、運
    的頭像 發(fā)表于 07-15 15:44 ?736次閱讀
    哪些場景要使用到RFID<b class='flag-5'>標簽</b>打印機?RFID<b class='flag-5'>標簽</b>打印機<b class='flag-5'>一</b>般多少錢?

    一種實時多線程VSLAM框架vS-Graphs介紹

    針對現(xiàn)有VSLAM系統(tǒng)語義表達不足、地圖可解釋性差的問題,本文提出vS-Graphs,一種實時多線程VSLAM框架。該方案顯著提升了重建地圖的語義豐富度、可解釋性及定位精度。實驗表明
    的頭像 發(fā)表于 04-19 14:07 ?766次閱讀
    <b class='flag-5'>一種</b>實時多線程VSLAM<b class='flag-5'>框架</b>vS-Graphs介紹

    一種高精度動態(tài)壓電陶瓷驅(qū)動電源

    利用高壓大帶寬MOSFET運放和高精度運放組成復(fù)合式負反饋放大電路,設(shè)計了一種高精度動態(tài)壓電陶瓷驅(qū)動電源電路圖。
    發(fā)表于 04-14 17:31 ?5次下載

    RFID在防偽標簽中的應(yīng)用

    RFID是一種通過無線電波進行數(shù)據(jù)讀寫和物體識別的技術(shù)。它由電子標簽、讀寫器和天線組成,能夠?qū)崿F(xiàn)非接觸式的數(shù)據(jù)交互。相比傳統(tǒng)的條形碼技術(shù),RFID具有更高的效率、更強的抗污染能力和更遠的讀取距離
    的頭像 發(fā)表于 04-10 16:12 ?814次閱讀
    RFID在防偽<b class='flag-5'>標簽</b>中的應(yīng)用

    RFID托盤標簽的應(yīng)用

    RFID托盤標簽一種專門用于物流和倉儲管理中托盤識別的電子標簽。它通過無線電波進行數(shù)據(jù)讀寫和物體識別,能夠?qū)崿F(xiàn)非接觸式的數(shù)據(jù)交互。與傳統(tǒng)的條形碼相比,RFID托盤標簽具有更高的效率、
    的頭像 發(fā)表于 04-08 17:13 ?625次閱讀
    RFID托盤<b class='flag-5'>標簽</b>的應(yīng)用

    一種多模態(tài)駕駛場景生成框架UMGen介紹

    端到端自動駕駛技術(shù)的快速發(fā)展對閉環(huán)仿真器提出了迫切需求,而生成式模型為其提供了一種有效的技術(shù)架構(gòu)。然而,現(xiàn)有的駕駛場景生成方法大多側(cè)重于圖像模態(tài),忽略了其他關(guān)鍵模態(tài)的建模,如地圖信息、智能交通參與者等,從而限制了其在真實駕駛場景中的適用性。
    的頭像 發(fā)表于 03-24 15:57 ?1525次閱讀
    <b class='flag-5'>一種</b>多模態(tài)駕駛場景生成<b class='flag-5'>框架</b>UMGen介紹

    北京迅為RK3568開發(fā)板OpenHarmony系統(tǒng)南向驅(qū)動開發(fā)內(nèi)核HDF驅(qū)動框架架構(gòu)

    北京迅為RK3568開發(fā)板OpenHarmony系統(tǒng)南向驅(qū)動開發(fā)內(nèi)核HDF驅(qū)動框架架構(gòu)
    的頭像 發(fā)表于 03-11 14:13 ?1602次閱讀
    北京迅為RK3568開發(fā)板OpenHarmony系統(tǒng)南向<b class='flag-5'>驅(qū)動</b>開發(fā)內(nèi)核HDF<b class='flag-5'>驅(qū)動</b><b class='flag-5'>框架</b>架構(gòu)

    免費分享篇《機械設(shè)計與制造》網(wǎng)絡(luò)首發(fā)論文——一種光電吊艙轉(zhuǎn)臺電機驅(qū)動裝置設(shè)計與實現(xiàn)

    這里基于某機電科技公司的永磁無刷直流力矩電機和Microchip公司 dsPIC30F4012芯片設(shè)計了一種光電吊艙轉(zhuǎn)臺電機驅(qū)動裝置。點擊附件查看詳情!*附件:一種光電吊艙轉(zhuǎn)臺電機驅(qū)動
    發(fā)表于 03-10 16:23

    RFID扎帶標簽的概述

    RFID扎帶標簽,也被稱為RFID綁帶標簽,是一種智能識別技術(shù)。它采用射頻識別(RFID)技術(shù),通過將標簽綁在扎帶上,實現(xiàn)對物品的追蹤和管理。這種
    的頭像 發(fā)表于 03-05 16:42 ?1177次閱讀
    RFID扎帶<b class='flag-5'>標簽</b>的概述

    FPC柔性電子標簽介紹和應(yīng)用

    貼合在復(fù)雜表面或者需要輕量化的設(shè)備中。特別是對于些對體積和重量要求極高的場景,F(xiàn)PC標簽無疑是一種理想的選擇。RFID柔性電子標簽的優(yōu)勢作為FPC
    的頭像 發(fā)表于 03-03 14:40 ?1288次閱讀
    FPC柔性電子<b class='flag-5'>標簽</b>介紹和應(yīng)用

    金融界:江西萬年芯取得一種 IPM 封裝裝置專利

    據(jù)金融界近期消息稱,江西萬年芯微電子有限公司取得項名為“一種IPM封裝裝置”的專利,該專利可更好地對IPM進行封裝,性能更優(yōu)。專利摘要顯示,本實用新型涉及IPM封裝裝置技術(shù)領(lǐng)域,尤其為一種IPM
    的頭像 發(fā)表于 02-17 14:10 ?929次閱讀
    金融界:江西萬年芯取得<b class='flag-5'>一種</b> IPM 封裝裝置專利

    納祥科技NX1722,一種帶鍵盤掃描的8段4位 LED 驅(qū)動控制方案

    NX1722是一種帶鍵盤掃描電路接口的 LED 驅(qū)動控制專用電路,內(nèi)部集成有 MCU 輸入輸出控制數(shù)字接口、數(shù)據(jù)鎖存器、LED 驅(qū)動、鍵盤掃描、輝度調(diào)節(jié)等電路。 NX1722性能穩(wěn)定、質(zhì)量可靠、抗干擾能力強,可適應(yīng)于 24 小
    的頭像 發(fā)表于 02-05 17:27 ?773次閱讀
    納祥科技NX1722,<b class='flag-5'>一種</b>帶鍵盤掃描的8段4位 LED <b class='flag-5'>驅(qū)動</b>控制方案

    基于中國汽研風(fēng)標模的風(fēng)共性課題征集

    及數(shù)據(jù)庫構(gòu)建”現(xiàn)面向行業(yè)征集合作單位。 、模塊化的CAERI AAM 設(shè)計與制作(已完成) 為了建立套科學(xué)高效的汽車風(fēng)開發(fā)體系,并用于風(fēng)機理研究及數(shù)據(jù)庫構(gòu)建,設(shè)計制作了基于模塊
    的頭像 發(fā)表于 01-13 10:18 ?826次閱讀
    基于中國汽研風(fēng)<b class='flag-5'>噪</b>標模的風(fēng)<b class='flag-5'>噪</b>共性課題征集