chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

在DeepStream上使用自己的Pytorch模型

jf_cVC5iyAO ? 來(lái)源:易心Microbit編程 ? 作者:易心Microbit編程 ? 2022-11-25 16:08 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

DeepStream是NVIDIA專為處理多個(gè)串流影像,并進(jìn)行智能辨識(shí)而整合出的強(qiáng)大工具。開(kāi)發(fā)語(yǔ)言除了原先的C++,從DeepStream SDK 5.1也支持基于原先安裝,再掛上Python套件的方式,讓較熟悉Python程序語(yǔ)言的使用者也能使用DeepStream。

本文主要將其應(yīng)用在Jetson Nano上,并于DeepStream導(dǎo)入自己的模型執(zhí)行辨識(shí)。

c8987b76-6c97-11ed-8abf-dac502259ad0.png

在Jetson Nano上面安裝DeepStream

筆者使用的硬件為Jetson Nano 2GB/4GB,參照官方提供的步驟與對(duì)應(yīng)的版本,幾乎可以說(shuō)是無(wú)痛安裝。對(duì)比同樣采用干凈映像檔,使用源碼或是Docker安裝的JetBot與Jetson Inference要快上許多。

c8b97b00-6c97-11ed-8abf-dac502259ad0.png

執(zhí)行官方范例

DeepStream有提供不少范例,不論是從CSIUSB接口的攝影機(jī)取得畫面,或是多影像辨識(shí)結(jié)果顯示,都能經(jīng)由查看這些范例,學(xué)習(xí)如何設(shè)定。

c8e2d50e-6c97-11ed-8abf-dac502259ad0.png

透過(guò)下列指令執(zhí)行一個(gè)配置文件,查看DeepStream是否安裝成功,這個(gè)配置文件會(huì)開(kāi)啟一部mp4影片,并模擬產(chǎn)生8個(gè)輸入來(lái)源,經(jīng)模型推論處理過(guò)后于同一個(gè)畫面顯示,點(diǎn)擊單一個(gè)區(qū)塊可以顯示該來(lái)源的詳細(xì)信息。實(shí)際應(yīng)用上可以將各部攝影機(jī)的畫面同時(shí)輸出并進(jìn)行處理。

deepstream-app -c source8_1080p_dec_infer-resnet_tracker_tiled_display_fp16_nano.txt

c917e2bc-6c97-11ed-8abf-dac502259ad0.png

使用自己的模型

如果您與筆者一樣是NVIDIA官方課程小粉絲,從擁有Jetson Nano開(kāi)始,就按部就班的跟著課程學(xué)習(xí),那您一定看過(guò)下列三種不同主題的課程。

c94d3020-6c97-11ed-8abf-dac502259ad0.png

從入門的Section 1開(kāi)始,到執(zhí)行Section 2的JetBot自駕車項(xiàng)目,最后Section 3 Hello AI World。經(jīng)過(guò)三個(gè)Section,您應(yīng)該稍微熟悉Pytorch,并且也訓(xùn)練了不少自己的模型,特別是在Hello AI World有訓(xùn)練了Object Detection模型。既然都有自己的模型,何不放到DeepStream上面制作專屬的串流辨識(shí)項(xiàng)目,針對(duì)想要辨識(shí)的項(xiàng)目導(dǎo)入適合的模型。

在Hello AI World項(xiàng)目訓(xùn)練Object Detection模型的時(shí)候,我們使用的是SSD-Mobilenet,在DeepStream的對(duì)象辨識(shí)范例中有提供使用自己的SSD模型方法,可在下列路徑找到參考文件,文件中使用的例子是使用coco數(shù)據(jù)集預(yù)訓(xùn)練的SSD-Inception。

/opt/nvidia/deepstream/deepstream-5.1/sources/objectDetector_SSD

可惜的是文件中使用的是從Tensorflow訓(xùn)練的模型,經(jīng)由轉(zhuǎn)換.uff再喂給DeepStream,與官方課程使用的Pytorch是不同路線。筆者在網(wǎng)上尋找解決方法,看是否有DeepStream使用Pytorch模型的方案,也于NVIDIA開(kāi)發(fā)者論壇找到幾個(gè)同樣的提問(wèn),但最終都是導(dǎo)到上述提到的參考文件。

從Hello AI World訓(xùn)練的Object Detection模型,經(jīng)過(guò)執(zhí)行推論的步驟,您應(yīng)該會(huì)有三個(gè)與模型有關(guān)的檔案,分別是用Pytorch訓(xùn)練好的.pth,以及為了使用TensorRT加速而將.pth轉(zhuǎn)換的.onnx,最后是執(zhí)行過(guò)程中產(chǎn)生的.engine。既然Pytorch模型找不到解決方案,那就從ONNX模型下手吧,所幸經(jīng)過(guò)一番折騰,終于讓筆者找到方法。

https://github.com/neilyoung/nvdsinfer_custom_impl_onnx

neilyoung提供的方法主要是能產(chǎn)生動(dòng)態(tài)函式庫(kù),以便我們能在DeepStream使用ONNX模型,除了準(zhǔn)備好自己訓(xùn)練的ONNX模型檔案與Labels檔案,只要再新增設(shè)定模型路徑與類型的config檔案,與deepstream配置文件就能實(shí)現(xiàn)使用自己的模型進(jìn)行推論啰!

STEP 1:

首先于以下路徑底下新增執(zhí)行ONNX項(xiàng)目的文件夾,筆者命名為objectDetector_ONNX。

/opt/nvidia/deepstream/deepstream-5.1/sources

c9758192-6c97-11ed-8abf-dac502259ad0.png

STEP 2:

新增專案文件夾后,請(qǐng)clone方才的nvdsinfer_custom_impl_onnx專案到文件夾內(nèi)。

c9a19570-6c97-11ed-8abf-dac502259ad0.png

STEP 3:

打開(kāi)Terminal進(jìn)到nvdsinfer_custom_impl_onnx項(xiàng)目里面,透過(guò)sudo make指令產(chǎn)生動(dòng)態(tài)函式庫(kù)。

c9d524d0-6c97-11ed-8abf-dac502259ad0.png

STEP 4:

接著將自己從Hello AI World項(xiàng)目訓(xùn)練的Object Detection模型與卷標(biāo)復(fù)制到objectDetector_ONNX項(xiàng)目文件夾。

ca257f5c-6c97-11ed-8abf-dac502259ad0.png

STEP 5:

從別的項(xiàng)目文件夾復(fù)制config檔案與deepstream配置文件到我們的文件夾內(nèi),這邊復(fù)制objectDetector_SSD,因?yàn)槟P皖愋拖嘟?,只要稍微修改即可?/p>

ca5449e0-6c97-11ed-8abf-dac502259ad0.png

STEP 6:

首先修改config檔案,如下圖所示,將模型路徑與卷標(biāo)路徑,修正為自己的模型與卷標(biāo)名稱,engine檔案的部份與Hello AI World項(xiàng)目一樣,在執(zhí)行ONNX檔案進(jìn)行TensorRT加速時(shí)會(huì)自動(dòng)產(chǎn)生,只需給路徑與名稱即可。對(duì)于classes的部份,切記在Hello AI World項(xiàng)目訓(xùn)練的模型會(huì)加上BACKGROUND這一個(gè)類別,所以若是您辨識(shí)的對(duì)象有三種,就得在classes這邊填上3+1。

下方三項(xiàng)的設(shè)定則依照nvdsinfer_custom_impl_onnx項(xiàng)目github上的說(shuō)明,記得動(dòng)態(tài)函式庫(kù)的路徑請(qǐng)改成自己的路徑。

output-blob-names="boxes;scores"

parse-bbox-func-name="NvDsInferParseCustomONNX"

custom-lib-path="/path/to/lib/libnvdsinfer_custom_impl_onnx.so"

接著依照個(gè)人需求設(shè)定辨識(shí)的參數(shù),例如希望信心指數(shù)達(dá)多少%才認(rèn)定對(duì)象類別,可以修改threshold。

ca7cc0be-6c97-11ed-8abf-dac502259ad0.png

STEP 7:

接著修改deepstream配置文件,筆者在這邊設(shè)定為USB Webcam輸入,并輸出單一窗口顯示,除了正常調(diào)整輸入與輸出之外,請(qǐng)將config檔案與Labels檔案導(dǎo)引至自己的路徑,engine的部份與config設(shè)定相同即可,如下圖所示。

caaf0092-6c97-11ed-8abf-dac502259ad0.png

完成上述7步驟后,就能執(zhí)行配置文件查看是否有正確執(zhí)行我們的ONNX模型,第一次執(zhí)行會(huì)較久,過(guò)程會(huì)產(chǎn)生engine檔案,一旦有了engine檔,之后執(zhí)行就不會(huì)再重復(fù)產(chǎn)生。

cad82972-6c97-11ed-8abf-dac502259ad0.png

成功執(zhí)行自定義模型的結(jié)果。

cb1ae4ec-6c97-11ed-8abf-dac502259ad0.png

結(jié)論

原官方范例大多執(zhí)行車流檢測(cè),若是想執(zhí)行別的應(yīng)用就得自己研究。本篇透過(guò)將自己訓(xùn)練好的Pytorch模型轉(zhuǎn)換為ONNX,經(jīng)7步驟后讓DeepStream可以使用我們自己的模型進(jìn)行辨識(shí),使其能應(yīng)用在交通以外的場(chǎng)景,例如室內(nèi)監(jiān)控、多機(jī)臺(tái)管控…等。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • C++
    C++
    +關(guān)注

    關(guān)注

    22

    文章

    2122

    瀏覽量

    76873
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    813

    瀏覽量

    14781

原文標(biāo)題:在DeepStream上使用自己的Pytorch模型

文章出處:【微信號(hào):易心Microbit編程,微信公眾號(hào):易心Microbit編程】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    Arm方案 基于Arm架構(gòu)的邊緣側(cè)設(shè)備(樹(shù)莓派或 NVIDIA Jetson Nano)上部署PyTorch模型

    本文將為你展示如何在樹(shù)莓派或 NVIDIA Jetson Nano 等基于 Arm 架構(gòu)的邊緣側(cè)設(shè)備上部署 PyTorch 模型。
    的頭像 發(fā)表于 07-28 11:50 ?2672次閱讀

    無(wú)法NPU推理OpenVINO?優(yōu)化的 TinyLlama 模型怎么解決?

    NPU 推斷 OpenVINO?優(yōu)化的 TinyLlama 模型。 遇到的錯(cuò)誤: get_shape was called on a descriptor::Tensor with dynamic shape
    發(fā)表于 07-11 06:58

    同樣的代碼官方開(kāi)發(fā)板運(yùn)行正常,自己板子就跑不起來(lái),怎么辦?

    同樣的代碼Nordic官方開(kāi)發(fā)板可以運(yùn)行正常,但在自己板子就跑不起來(lái),如果你碰到了上述情況,建議按照如下步驟進(jìn)行自檢: 首先確認(rèn)用戶板元器件焊接良好,功能正常。如果你的板子有LE
    的頭像 發(fā)表于 05-12 15:26 ?667次閱讀
    同樣的代碼<b class='flag-5'>在</b>官方開(kāi)發(fā)板<b class='flag-5'>上</b>運(yùn)行正常,<b class='flag-5'>在</b><b class='flag-5'>自己</b>板子<b class='flag-5'>上</b>就跑不起來(lái),怎么辦?

    KaihongOS操作系統(tǒng)FA模型與Stage模型介紹

    (Feature Ability) FA模型是KaihongOS 從API 7開(kāi)始支持的模型,已經(jīng)不再被主推。FA模型中,每個(gè)應(yīng)用組件獨(dú)享一個(gè)ArkTS引擎實(shí)例,這意味著每個(gè)應(yīng)用組
    發(fā)表于 04-24 07:27

    DeepSeek昇騰模型部署的常見(jiàn)問(wèn)題及解決方案

    開(kāi)發(fā)者。 本文將為你詳細(xì)闡述昇騰DeepSeek模型部署的優(yōu)秀實(shí)踐。 昇騰DeepSeek模型部署的常見(jiàn)問(wèn)題及解決方案見(jiàn): DeepSeek昇騰
    的頭像 發(fā)表于 03-25 16:53 ?2137次閱讀
    DeepSeek<b class='flag-5'>在</b>昇騰<b class='flag-5'>上</b>的<b class='flag-5'>模型</b>部署的常見(jiàn)問(wèn)題及解決方案

    小身板大能量:樹(shù)莓派玩轉(zhuǎn) Phi-2、Mistral 和 LLaVA 等AI大模型~

    你是否想過(guò)自己的設(shè)備運(yùn)行自己的大型語(yǔ)言模型(LLMs)或視覺(jué)語(yǔ)言模型(VLMs)?你可能有過(guò)
    的頭像 發(fā)表于 03-25 09:32 ?845次閱讀
    小身板大能量:樹(shù)莓派玩轉(zhuǎn) Phi-2、Mistral 和 LLaVA 等AI大<b class='flag-5'>模型</b>~

    可以OpenVINO?工具套件的視覺(jué)處理單元推斷語(yǔ)音合成模型嗎?

    無(wú)法確定是否可以 VPU 推斷語(yǔ)音合成模型
    發(fā)表于 03-06 08:29

    無(wú)法GPU運(yùn)行ONNX模型的Benchmark_app怎么解決?

    CPU 和 GPU 運(yùn)行OpenVINO? 2023.0 Benchmark_app推斷的 ONNX 模型。 CPU 推理成功
    發(fā)表于 03-06 08:02

    使用OpenVINO?進(jìn)行優(yōu)化后,為什么DETR模型不同的硬件測(cè)試時(shí)顯示不同的結(jié)果?

    通過(guò)模型優(yōu)化優(yōu)化了 DETR 模型 SPR 計(jì)算機(jī)上使用優(yōu)化模型(DETR 模型)運(yùn)行了benchmark_app,并節(jié)省了延遲
    發(fā)表于 03-05 10:27

    使用OpenVINO? 2021.4將經(jīng)過(guò)訓(xùn)練的自定義PyTorch模型加載為IR格式時(shí)遇到錯(cuò)誤怎么解決?

    使用 OpenVINO? 2021.4 將經(jīng)過(guò)訓(xùn)練的自定義 PyTorch 模型加載為 IR 格式時(shí)遇到錯(cuò)誤: RuntimeError: [ GENERAL_ERROR ] Failed
    發(fā)表于 03-05 08:40

    無(wú)法OVMS運(yùn)行來(lái)自Meta的大型語(yǔ)言模型 (LLM),為什么?

    無(wú)法 OVMS 運(yùn)行來(lái)自 Meta 的大型語(yǔ)言模型 (LLM),例如 LLaMa2。 從 OVMS GitHub* 存儲(chǔ)庫(kù)運(yùn)行 llama_chat Python* Demo 時(shí)遇到錯(cuò)誤。
    發(fā)表于 03-05 08:07

    如何在Arm Ethos-U85使用ExecuTorch

    快速發(fā)展的機(jī)器學(xué)習(xí)領(lǐng)域,PyTorch 憑借其靈活性和全面的生態(tài)系統(tǒng),已成為模型開(kāi)發(fā)的熱門框架。Arm 與 Meta 合作 ExecuTorch 中引入了對(duì) Arm 平臺(tái)的支持,進(jìn)
    的頭像 發(fā)表于 02-14 14:23 ?1116次閱讀
    如何在Arm Ethos-U85<b class='flag-5'>上</b>使用ExecuTorch

    操作指南:pytorch云服務(wù)器怎么設(shè)置?

    設(shè)置PyTorch云服務(wù)器需選擇云平臺(tái),創(chuàng)建合適的GPU實(shí)例,安裝操作系統(tǒng)、Python及Anaconda,創(chuàng)建虛擬環(huán)境,根據(jù)CUDA版本安裝PyTorch,配置環(huán)境變量,最后驗(yàn)證安裝。過(guò)程中需考慮
    的頭像 發(fā)表于 02-08 10:33 ?699次閱讀

    Deepseek單片機(jī)?RT-Thread跑通大語(yǔ)言模型

    前言單片機(jī)也能聊天?RT-Thread跑通大語(yǔ)言模型RT-Thread論壇忽然看到了單片機(jī)和大模型對(duì)話的文章,想著春節(jié)期間看到大語(yǔ)言
    的頭像 發(fā)表于 02-07 18:59 ?2599次閱讀
    Deepseek<b class='flag-5'>上</b>單片機(jī)?RT-Thread<b class='flag-5'>上</b>跑通大語(yǔ)言<b class='flag-5'>模型</b>

    自己的電腦搭建云,怎么電腦搭建云服務(wù)?

    ? ? 在數(shù)字化時(shí)代,數(shù)據(jù)的存儲(chǔ)與管理愈發(fā)重要。很多人依賴云服務(wù)來(lái)存儲(chǔ)文件、實(shí)現(xiàn)多設(shè)備同步。其實(shí),我們完全可以自己的電腦搭建云服務(wù),打造專屬的個(gè)性化云端環(huán)境。 ? ?搭建云服務(wù)前,需做好充分準(zhǔn)備
    的頭像 發(fā)表于 01-22 10:06 ?892次閱讀
    <b class='flag-5'>在</b><b class='flag-5'>自己</b>的電腦<b class='flag-5'>上</b>搭建云,怎么<b class='flag-5'>在</b>電腦<b class='flag-5'>上</b>搭建云服務(wù)?