chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

自制機器學習預測模型技術原理詳解

jf_WZTOguxH ? 來源:AI前線 ? 作者:AI前線 ? 2022-11-30 14:00 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

2022 FIFA 世界杯火熱進行中!這段時間,這場盛宴吸引了全球球迷的目光。除了讓人心跳加快的賽況和被大家調(diào)侃像餛飩皮的吉祥物之外,預測和投注哪支隊伍將會奪冠絕對是球迷最大的樂趣之一。

我也是眾多想要知道今年誰會奪冠的球迷之一。想到就要去做!于是我花了 2 天時間,用 DolphinScheduler 制作了一個機器學習預測模型來預測 2022 年 FIFA 世界杯的冠軍,而且每天能獲得一個 betting_stratrgy。

這個事情并不復雜,實際上只需要 3 個步驟就可以完成預測,我把實現(xiàn)的過程在 GitHub 上分享出來了:https://github.com/jieguangzhou/FIFA-World-Cup-2022/tree/master

這是我的預測結(jié)果:

aabdc264-7070-11ed-8abf-dac502259ad0.png

我還錄制了一個視頻來解釋整個工作的過程和原理,希望能幫助你享受這場體育盛宴,或者只是娛樂一下:)

我還錄制了一個視頻來解釋整個工作的過程和原理,希望能幫助你享受這場體育盛宴,或者只是娛樂一下:)

視頻口誤糾正:41s 處應為“塞爾維亞獲勝的幾率”,12:15s 處應為“葡萄牙 vs. 加納”。

視頻中演示所用的 GitHub 地址:https://github.com/jieguangzhou/FIFA-World-Cup-2022/tree/master

下面是這個項目的具體實現(xiàn)方法,感興趣的朋友不妨試試。

賽事播報

世界杯冠軍預測

使用兩種不同預測方法的結(jié)果:

1. 基于球隊獲勝概率模擬 1000 次世界杯預選賽結(jié)果

獲得冠軍的概率

aae2479c-7070-11ed-8abf-dac502259ad0.png

前四名

aaf9f8b0-7070-11ed-8abf-dac502259ad0.png

2. 選擇獲勝概率高的球隊

ab08a680-7070-11ed-8abf-dac502259ad0.png

所有比賽結(jié)果可在以下兩個文件中查看

https://github.com/jieguangzhou/FIFA-World-Cup-2022/blob/workflow-pro/results/predict.txt

https://github.com/jieguangzhou/FIFA-World-Cup-2022/blob/workflow-pro/results/results.csv

以上結(jié)果來自分支 workflow-pro。該分支將訓練更長的模型并運行更多次的模擬比賽。

賽事播報

我是如何建立這個模型的?

1

三步構(gòu)建預測系統(tǒng)

Step-1 啟動 DolphinScheduler

我們可以使用 Docker 啟動 Dolphinscheduler 獨立服務

docker run --name dolphinscheduler-standalone-server -p 12345:12345 -p 25333:25333 -d jalonzjg/dolphinscheduler-fifa

如果沒有安裝 Doker,可到 https://www.docker.com/ 下載

接著,你可以在 http://localhost:12345/dolphinscheduler/ui 登錄 DolphinScheduler

用戶:admin 密碼:dolphinscheduler123

ab389b6a-7070-11ed-8abf-dac502259ad0.png

Step-2 提交流程

python3 -m pip install apache-dolphinscheduler==3.1.1

export PYDS_HOME=。/

python3 pyds.py

您可以單擊Project -》 FIFA

ab4409fa-7070-11ed-8abf-dac502259ad0.png

然后,我們可以看到 2 個工作流程

training:使用 FLAML 訓練模型

predict:使用模型預測哪個國家會贏得世界杯

ab583e34-7070-11ed-8abf-dac502259ad0.png

Step-3 運行工作流

開始訓練工作流程

ab6faf06-7070-11ed-8abf-dac502259ad0.png

我們可以在工作流完成后查看日志。

ab7b78b8-7070-11ed-8abf-dac502259ad0.png

開啟預測工作流

工作流完成后可查看日志。

ab9a0134-7070-11ed-8abf-dac502259ad0.png

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關注

    關注

    1

    文章

    3694

    瀏覽量

    51959
  • 機器學習
    +關注

    關注

    66

    文章

    8546

    瀏覽量

    136539

原文標題:預測 2022 年 FIFA 世界杯冠軍大概率是荷蘭!自制機器學習預測模型技術原理詳解

文章出處:【微信號:AI前線,微信公眾號:AI前線】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    從數(shù)據(jù)到模型:如何預測細節(jié)距鍵合的剪切力?

    在微電子封裝領域,細節(jié)距鍵合工藝的開發(fā)與質(zhì)量控制面臨著巨大挑戰(zhàn)。工程師們常常需要在缺乏大量破壞性測試的前提下,快速評估或預測一個鍵合點的剪切力性能。能否根據(jù)焊球的表觀尺寸,通過一個可靠的數(shù)學模型
    發(fā)表于 01-08 09:45

    機器學習和深度學習中需避免的 7 個常見錯誤與局限性

    無論你是剛?cè)腴T還是已經(jīng)從事人工智能模型相關工作一段時間,機器學習和深度學習中都存在一些我們需要時刻關注并銘記的常見錯誤。如果對這些錯誤置之不理,日后可能會引發(fā)諸多麻煩!只要我們密切關注
    的頭像 發(fā)表于 01-07 15:37 ?114次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>中需避免的 7 個常見錯誤與局限性

    基于ETAS嵌入式AI工具鏈將機器學習模型部署到量產(chǎn)ECU

    AI在汽車行業(yè)的應用日益深化,如何將機器學習領域的先進模型(如虛擬傳感器)集成到ECU軟件中,已成為業(yè)界面臨的核心挑戰(zhàn)。
    的頭像 發(fā)表于 12-24 10:55 ?5419次閱讀
    基于ETAS嵌入式AI工具鏈將<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>模型</b>部署到量產(chǎn)ECU

    模型賦能物資需求精準預測與采購系統(tǒng):功能特點與平臺架構(gòu)解析

    ? ? 大模型賦能物資需求預測與采購智能化:核心功能與價值解析 ? ?大模型賦能物資需求精準預測與采購系統(tǒng)通過深度整合多源數(shù)據(jù)、構(gòu)建動態(tài)預測
    的頭像 發(fā)表于 12-16 11:54 ?241次閱讀

    超小型Neuton機器學習模型, 在任何系統(tǒng)級芯片(SoC)上解鎖邊緣人工智能應用.

    Neuton 是一家邊緣AI 公司,致力于讓機器 學習模型更易于使用。它創(chuàng)建的模型比競爭對手的框架小10 倍,速度也快10 倍,甚至可以在最先進的邊緣設備上進行人工智能處理。在這篇博文
    發(fā)表于 07-31 11:38

    FPGA在機器學習中的具體應用

    隨著機器學習和人工智能技術的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復雜模型的需求。FPGA(現(xiàn)場可編程門陣列)作為一種靈活且高效
    的頭像 發(fā)表于 07-16 15:34 ?2776次閱讀

    通過NVIDIA Cosmos模型增強機器人學習

    通用機器人的時代已經(jīng)到來,這得益于機械電子技術機器人 AI 基礎模型的進步。但目前機器技術
    的頭像 發(fā)表于 07-14 11:49 ?961次閱讀
    通過NVIDIA Cosmos<b class='flag-5'>模型</b>增強<b class='flag-5'>機器人學習</b>

    鴻蒙中Stage模型與FA模型詳解

    【HarmonyOS 5】鴻蒙中Stage模型與FA模型詳解 ##鴻蒙開發(fā)能力 ##HarmonyOS SDK應用服務##鴻蒙金融類應用 (金融理財# 一、前言 在HarmonyOS 5的應用開發(fā)
    的頭像 發(fā)表于 07-07 11:50 ?804次閱讀

    模型推理顯存和計算量估計方法研究

    隨著人工智能技術的飛速發(fā)展,深度學習模型在各個領域得到了廣泛應用。然而,大模型的推理過程對顯存和計算資源的需求較高,給實際應用帶來了挑戰(zhàn)。為了解決這一問題,本文將探討大
    發(fā)表于 07-03 19:43

    模型在半導體行業(yè)的應用可行性分析

    的應用,比如使用機器學習分析數(shù)據(jù),提升良率。 這一些大模型是否真的有幫助 能夠在解決工程師的知識斷層問題 本人純小白,不知道如何涉足這方面 應該問什么大模型比較好,或者是看什么視頻能夠
    發(fā)表于 06-24 15:10

    邊緣計算中的機器學習:基于 Linux 系統(tǒng)的實時推理模型部署與工業(yè)集成!

    你好,旅行者!歡迎來到Medium的這一角落。在本文中,我們將把一個機器學習模型(神經(jīng)網(wǎng)絡)部署到邊緣設備上,利用從ModbusTCP寄存器獲取的實時數(shù)據(jù)來預測一臺復古音頻放大器的當前
    的頭像 發(fā)表于 06-11 17:22 ?915次閱讀
    邊緣計算中的<b class='flag-5'>機器</b><b class='flag-5'>學習</b>:基于 Linux 系統(tǒng)的實時推理<b class='flag-5'>模型</b>部署與工業(yè)集成!

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】機器人入門的引路書

    的限制和調(diào)控) 本書還有很多前沿技術項目的擴展 比如神經(jīng)網(wǎng)絡識別例程,機器學習圖像識別的原理,yolo圖像追蹤的原理 機器學習訓練三大點:
    發(fā)表于 04-30 01:05

    國產(chǎn)地物光譜儀在“高光譜-機器學習模型構(gòu)建中的表現(xiàn)

    在遙感應用和環(huán)境監(jiān)測日益精細化的今天,“高光譜 + 機器學習”的組合已成為地物識別、礦產(chǎn)探測、農(nóng)業(yè)監(jiān)測等領域的重要技術手段。而作為獲取高光譜數(shù)據(jù)的前端工具,地物光譜儀的性能直接影響到后續(xù)模型
    的頭像 發(fā)表于 04-18 16:15 ?650次閱讀
    國產(chǎn)地物光譜儀在“高光譜-<b class='flag-5'>機器</b><b class='flag-5'>學習</b>”<b class='flag-5'>模型</b>構(gòu)建中的表現(xiàn)

    請問是否可以在模型服務器中使用REST請求OpenVINO?預測?

    是否可以在模型服務器中使用 REST 請求OpenVINO?預測?
    發(fā)表于 03-05 08:06

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習
    的頭像 發(fā)表于 02-13 09:39 ?691次閱讀