chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用TensorBoard的機(jī)器學(xué)習(xí)模型分析

星星科技指導(dǎo)員 ? 來源:volansys ? 作者:Aekam Parmar ? 2022-12-06 14:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)正在突飛猛進(jìn)地發(fā)展,新的神經(jīng)網(wǎng)絡(luò)模型定期出現(xiàn)。這些模型針對(duì)特定數(shù)據(jù)集進(jìn)行了訓(xùn)練,并經(jīng)過了準(zhǔn)確性和處理速度的證明。開發(fā)人員需要評(píng)估 ML 模型,并確保它在部署之前滿足預(yù)期的特定閾值和功能。有很多實(shí)驗(yàn)可以提高模型性能,在設(shè)計(jì)和訓(xùn)練模型時(shí),可視化差異變得至關(guān)重要。TensorBoard 有助于可視化模型,使分析變得不那么復(fù)雜,因?yàn)楫?dāng)人們可以看到問題所在時(shí),調(diào)試變得更加容易。

訓(xùn)練 ML 模型的一般實(shí)踐

一般做法是使用預(yù)先訓(xùn)練的模型,并執(zhí)行遷移學(xué)習(xí)以針對(duì)類似的數(shù)據(jù)集重新訓(xùn)練模型。在一種稱為遷移學(xué)習(xí)的技術(shù)中,神經(jīng)網(wǎng)絡(luò)模型首先針對(duì)與正在解決的問題類似的問題進(jìn)行訓(xùn)練。然后,將訓(xùn)練模型中的一個(gè)或多個(gè)層用于針對(duì)感興趣的問題進(jìn)行訓(xùn)練的新模型中。

大多數(shù)情況下,預(yù)訓(xùn)練模型采用二進(jìn)制格式(保存的模型、協(xié)議緩沖區(qū)),這使得獲取內(nèi)部信息并立即開始處理變得困難。從組織的業(yè)務(wù)角度來看,使用一些工具來深入了解模型,從而縮短項(xiàng)目交付時(shí)間是有意義的。

有幾個(gè)可用選項(xiàng)可用于獲取模型信息,例如層數(shù)和相關(guān)參數(shù)。模型摘要和模型圖是基本選項(xiàng)。這些選項(xiàng)非常簡單,考慮了幾行實(shí)現(xiàn),并提供非?;镜脑敿?xì)信息,如層數(shù)、層類型和每層的輸入/輸出。

但是,模型摘要和模型圖對(duì)于以協(xié)議緩沖區(qū)的形式理解任何大型復(fù)雜模型的每個(gè)細(xì)節(jié)并不那么有效。在這種情況下,使用 TensorBoard 這個(gè) TensorFlow 提供的可視化工具更有意義。考慮到它提供的各種可視化選項(xiàng),如模型(當(dāng)然)、標(biāo)量和指標(biāo)(訓(xùn)練和驗(yàn)證數(shù)據(jù))、圖像(來自數(shù)據(jù)集)、超參數(shù)調(diào)優(yōu)等,它非常強(qiáng)大。

讓我們看看TensorBoard如何幫助更好地可視化機(jī)器學(xué)習(xí)模型。

用于可視化自定義模型的模型圖

此選項(xiàng)很有幫助,尤其是在以協(xié)議緩沖區(qū)的形式接收自定義模型時(shí),并且在進(jìn)行任何修改或訓(xùn)練之前需要了解它。如下圖所示,在電路板上可視化了順序 CNN 的概述。每個(gè)塊代表一個(gè)單獨(dú)的圖層,選擇其中一個(gè)塊將在右上角打開一個(gè)窗口,其中包含輸入和輸出信息。

poYBAGOO4qaAKKhmAADYz4qnn1E472.png

如果需要進(jìn)一步的信息,關(guān)于各個(gè)塊內(nèi)的內(nèi)容,只需雙擊塊,這將展開塊并提供更多詳細(xì)信息。請(qǐng)注意,一個(gè)塊可以包含一個(gè)或多個(gè)塊,這些塊可以逐層擴(kuò)展。選擇任何特定操作時(shí),它還將提供有關(guān)相關(guān)處理參數(shù)的更多信息。

pYYBAGOO4q2AHzS6AAIh5pUMQ-Y405.png

用于分析模型訓(xùn)練和驗(yàn)證的標(biāo)量和指標(biāo)

機(jī)器學(xué)習(xí)的第二個(gè)重要方面是分析給定模型的訓(xùn)練和驗(yàn)證。從精度和速度的角度來看,性能對(duì)于使其適用于現(xiàn)實(shí)生活中的實(shí)際應(yīng)用非常重要。在下圖中,可以看出模型的準(zhǔn)確性隨著周期/迭代次數(shù)的增加而提高。如果訓(xùn)練和測(cè)試驗(yàn)證不符合標(biāo)準(zhǔn),則表明某些內(nèi)容不正確。這可能是欠擬合或過度擬合的情況,可以通過修改圖層/參數(shù)或改進(jìn)數(shù)據(jù)集或兩者來糾正。

pYYBAGOO4q-AAE-rAAFqkfIjyek139.png

圖像數(shù)據(jù),用于可視化數(shù)據(jù)集中的圖像

顧名思義,它有助于可視化圖像。它不僅限于可視化數(shù)據(jù)集中的圖像,而且還以圖像的形式顯示混淆矩陣。此矩陣表示檢測(cè)各個(gè)類對(duì)象的準(zhǔn)確性。如下圖所示,該模型將外套與套頭衫混淆了。為了克服這種情況,建議改進(jìn)特定類的數(shù)據(jù)集,以便為模型提供可區(qū)分的特征,以便更好地學(xué)習(xí),從而提高準(zhǔn)確性。

pYYBAGOO4reAatb-AAHG1GCdt-M131.png

超參數(shù)調(diào)優(yōu),以實(shí)現(xiàn)所需的模型精度

模型的準(zhǔn)確性取決于輸入數(shù)據(jù)集、層數(shù)和相關(guān)參數(shù)。在大多數(shù)情況下,在初始訓(xùn)練期間,精度永遠(yuǎn)不會(huì)達(dá)到預(yù)期的精度,并且除了數(shù)據(jù)集之外,還需要考慮層數(shù)、層類型、相關(guān)參數(shù)。此過程稱為超參數(shù)優(yōu)化。

在此過程中,提供了一系列超參數(shù)供模型選擇,并且使用這些參數(shù)的組合運(yùn)行模型。每個(gè)組合的準(zhǔn)確性都會(huì)記錄在電路板上并可視化。它糾正了手動(dòng)訓(xùn)練模型所消耗的工作量和時(shí)間,這些工作和時(shí)間將針對(duì)超參數(shù)的每個(gè)可能組合進(jìn)行。

poYBAGOO4rmAGKOZAAGa4_c6UA8769.png

用于分析模型處理速度的分析工具

除了準(zhǔn)確性之外,處理速度是任何模型同樣重要的方面。有必要分析單個(gè)塊消耗的處理時(shí)間,以及是否可以通過進(jìn)行一些修改來減少處理時(shí)間。分析工具提供了具有不同時(shí)期的每個(gè)操作所消耗的時(shí)間的圖形表示。通過這種可視化,人們可以輕松查明消耗更多時(shí)間的操作。一些已知的開銷可能是調(diào)整輸入大小,從Python轉(zhuǎn)換模型代碼,在CPU而不是GPU中運(yùn)行代碼。處理好這些事情將有助于實(shí)現(xiàn)最佳性能。

pYYBAGOO4sGAfIq_AAJF1Iqz8Kk449.png

poYBAGOO4siATUYzAAIK_uu6pqM510.png

總的來說,TensorBoard是一個(gè)很好的工具,有助于開發(fā)和訓(xùn)練過程。來自標(biāo)量和指標(biāo)、圖像數(shù)據(jù)和超參數(shù)優(yōu)化的數(shù)據(jù)有助于提高準(zhǔn)確性,而分析工具有助于提高處理速度。TensorBoard還有助于減少所涉及的調(diào)試時(shí)間,否則這肯定會(huì)是一個(gè)很大的時(shí)間框架。在 VOLANSYS,我們的機(jī)器學(xué)習(xí)專家專門使用各種數(shù)據(jù)分析和可視化工具,基于安全、預(yù)防性維護(hù)、聊天機(jī)器人、音頻/視頻分析等最終用戶應(yīng)用程序構(gòu)建優(yōu)化的機(jī)器學(xué)習(xí)模型,從而使我們成為機(jī)器學(xué)習(xí)服務(wù)的首選合作伙伴。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 可視化
    +關(guān)注

    關(guān)注

    1

    文章

    1340

    瀏覽量

    22694
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8546

    瀏覽量

    136525
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    機(jī)器學(xué)習(xí)和深度學(xué)習(xí)中需避免的 7 個(gè)常見錯(cuò)誤與局限性

    無論你是剛?cè)腴T還是已經(jīng)從事人工智能模型相關(guān)工作一段時(shí)間,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)中都存在一些我們需要時(shí)刻關(guān)注并銘記的常見錯(cuò)誤。如果對(duì)這些錯(cuò)誤置之不理,日后可能會(huì)引發(fā)諸多麻煩!只要我們密切關(guān)注
    的頭像 發(fā)表于 01-07 15:37 ?109次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>中需避免的 7 個(gè)常見錯(cuò)誤與局限性

    基于ETAS嵌入式AI工具鏈將機(jī)器學(xué)習(xí)模型部署到量產(chǎn)ECU

    AI在汽車行業(yè)的應(yīng)用日益深化,如何將機(jī)器學(xué)習(xí)領(lǐng)域的先進(jìn)模型(如虛擬傳感器)集成到ECU軟件中,已成為業(yè)界面臨的核心挑戰(zhàn)。
    的頭像 發(fā)表于 12-24 10:55 ?5410次閱讀
    基于ETAS嵌入式AI工具鏈將<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>模型</b>部署到量產(chǎn)ECU

    超小型Neuton機(jī)器學(xué)習(xí)模型, 在任何系統(tǒng)級(jí)芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機(jī)器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競爭對(duì)手的框架小10 倍,速度也快10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文
    發(fā)表于 07-31 11:38

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    隨著機(jī)器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無法滿足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場可編程門陣列)作為一種靈活且高效的硬件加速平臺(tái)
    的頭像 發(fā)表于 07-16 15:34 ?2773次閱讀

    通過NVIDIA Cosmos模型增強(qiáng)機(jī)器人學(xué)習(xí)

    通用機(jī)器人的時(shí)代已經(jīng)到來,這得益于機(jī)械電子技術(shù)和機(jī)器人 AI 基礎(chǔ)模型的進(jìn)步。但目前機(jī)器人技術(shù)的發(fā)展仍面臨一個(gè)關(guān)鍵挑戰(zhàn):機(jī)器人需要大量的訓(xùn)練
    的頭像 發(fā)表于 07-14 11:49 ?959次閱讀
    通過NVIDIA Cosmos<b class='flag-5'>模型</b>增強(qiáng)<b class='flag-5'>機(jī)器人學(xué)習(xí)</b>

    模型推理顯存和計(jì)算量估計(jì)方法研究

    GPU、FPGA等硬件加速。通過分析硬件加速器的性能參數(shù),可以估算模型在硬件加速下的計(jì)算量。 四、實(shí)驗(yàn)與分析 為了驗(yàn)證上述估計(jì)方法的有效性,我們選取了幾個(gè)具有代表性的深度學(xué)習(xí)
    發(fā)表于 07-03 19:43

    模型在半導(dǎo)體行業(yè)的應(yīng)用可行性分析

    的應(yīng)用,比如使用機(jī)器學(xué)習(xí)分析數(shù)據(jù),提升良率。 這一些大模型是否真的有幫助 能夠在解決工程師的知識(shí)斷層問題 本人純小白,不知道如何涉足這方面 應(yīng)該問什么大
    發(fā)表于 06-24 15:10

    邊緣計(jì)算中的機(jī)器學(xué)習(xí):基于 Linux 系統(tǒng)的實(shí)時(shí)推理模型部署與工業(yè)集成!

    你好,旅行者!歡迎來到Medium的這一角落。在本文中,我們將把一個(gè)機(jī)器學(xué)習(xí)模型(神經(jīng)網(wǎng)絡(luò))部署到邊緣設(shè)備上,利用從ModbusTCP寄存器獲取的實(shí)時(shí)數(shù)據(jù)來預(yù)測(cè)一臺(tái)復(fù)古音頻放大器的當(dāng)前健康狀況。你將
    的頭像 發(fā)表于 06-11 17:22 ?910次閱讀
    邊緣計(jì)算中的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>:基于 Linux 系統(tǒng)的實(shí)時(shí)推理<b class='flag-5'>模型</b>部署與工業(yè)集成!

    機(jī)器學(xué)習(xí)賦能的智能光子學(xué)器件系統(tǒng)研究與應(yīng)用

    與應(yīng)用 在人工智能與光子學(xué)設(shè)計(jì)融合的背景下,科研的邊界持續(xù)擴(kuò)展,創(chuàng)新成果不斷涌現(xiàn)。從理論模型的整合到光學(xué)現(xiàn)象的復(fù)雜模擬,從數(shù)據(jù)驅(qū)動(dòng)的探索到光場的智能分析,機(jī)器學(xué)習(xí)正以前所未有的動(dòng)力推動(dòng)
    的頭像 發(fā)表于 06-04 17:59 ?565次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>賦能的智能光子學(xué)器件系統(tǒng)研究與應(yīng)用

    【「# ROS 2智能機(jī)器人開發(fā)實(shí)踐」閱讀體驗(yàn)】機(jī)器人入門的引路書

    的限制和調(diào)控) 本書還有很多前沿技術(shù)項(xiàng)目的擴(kuò)展 比如神經(jīng)網(wǎng)絡(luò)識(shí)別例程,機(jī)器學(xué)習(xí)圖像識(shí)別的原理,yolo圖像追蹤的原理 機(jī)器學(xué)習(xí)訓(xùn)練三大點(diǎn): 先準(zhǔn)備一個(gè)基本的
    發(fā)表于 04-30 01:05

    國產(chǎn)地物光譜儀在“高光譜-機(jī)器學(xué)習(xí)模型構(gòu)建中的表現(xiàn)

    在遙感應(yīng)用和環(huán)境監(jiān)測(cè)日益精細(xì)化的今天,“高光譜 + 機(jī)器學(xué)習(xí)”的組合已成為地物識(shí)別、礦產(chǎn)探測(cè)、農(nóng)業(yè)監(jiān)測(cè)等領(lǐng)域的重要技術(shù)手段。而作為獲取高光譜數(shù)據(jù)的前端工具,地物光譜儀的性能直接影響到后續(xù)模型的精度
    的頭像 發(fā)表于 04-18 16:15 ?645次閱讀
    國產(chǎn)地物光譜儀在“高光譜-<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>”<b class='flag-5'>模型</b>構(gòu)建中的表現(xiàn)

    十大鮮為人知卻功能強(qiáng)大的機(jī)器學(xué)習(xí)模型

    本文轉(zhuǎn)自:QuantML當(dāng)我們談?wù)?b class='flag-5'>機(jī)器學(xué)習(xí)時(shí),線性回歸、決策樹和神經(jīng)網(wǎng)絡(luò)這些常見的算法往往占據(jù)了主導(dǎo)地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強(qiáng)大的算法,它們能夠以驚人的效率
    的頭像 發(fā)表于 04-02 14:10 ?1009次閱讀
    十大鮮為人知卻功能強(qiáng)大的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>模型</b>

    機(jī)器學(xué)習(xí)模型市場前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 02-13 09:39 ?689次閱讀

    小白學(xué)解釋性AI:從機(jī)器學(xué)習(xí)到大模型

    科學(xué)AI需要可解釋性人工智能的崛起,尤其是深度學(xué)習(xí)的發(fā)展,在眾多領(lǐng)域帶來了令人矚目的進(jìn)步。然而,伴隨這些進(jìn)步而來的是一個(gè)關(guān)鍵問題——“黑箱”問題。許多人工智能模型,特別是復(fù)雜的模型,如神經(jīng)網(wǎng)
    的頭像 發(fā)表于 02-10 12:12 ?1268次閱讀
    小白學(xué)解釋性AI:從<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>到大<b class='flag-5'>模型</b>

    嵌入式機(jī)器學(xué)習(xí)的應(yīng)用特性與軟件開發(fā)環(huán)境

    作者:DigiKey Editor 在許多嵌入式系統(tǒng)中,必須采用嵌入式機(jī)器學(xué)習(xí)(Embedded Machine Learning)技術(shù),這是指將機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 01-25 17:05 ?1406次閱讀
    嵌入式<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開發(fā)環(huán)境