chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能套裝 Ai Kit 橫向測(cè)評(píng)

大象機(jī)器人科技 ? 來(lái)源:大象機(jī)器人科技 ? 作者:大象機(jī)器人科技 ? 2023-02-21 16:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文涉及到的產(chǎn)品

1 mechArm 270

2 mycobot 280

3 mypalletizer 260

4 AI kit

主題內(nèi)容

今天的文章的主題主要介紹一下跟aikit 套件搭配的三款機(jī)械臂,它們之間分別有什么不一樣的地方。

前言

假如說(shuō)你有一臺(tái)機(jī)械臂的話,你會(huì)用它來(lái)干什么呢?簡(jiǎn)單的控制機(jī)械臂動(dòng)一動(dòng);讓它重復(fù)執(zhí)行某個(gè)軌跡;還是讓它能夠在工業(yè)上代替人類去工作。在隨著時(shí)代的進(jìn)步,機(jī)器人頻繁的出現(xiàn)在我們的周圍,它們代替我們從事危險(xiǎn)的工作,服務(wù)人類等。今天我們一起來(lái)看一下,機(jī)械臂是如何在一個(gè)放工業(yè)場(chǎng)景中進(jìn)行工作的。

介紹

what is AI kit?

人工智能套裝是集視覺(jué)、定位抓取、自動(dòng)分揀模塊為一體的入門級(jí)人工智能套裝。

基于Linux系統(tǒng),在ROS搭建1:1仿真模型,可通過(guò)開發(fā)軟件實(shí)現(xiàn)機(jī)械臂的控制,能夠快速入門學(xué)習(xí)人工智能基礎(chǔ)知識(shí)。

poYBAGP0eQOAUhTGAA1XyKoGdb8101.png

目前我們的人工智能套裝可以實(shí)現(xiàn)對(duì)顏色識(shí)別和抓取,對(duì)圖像識(shí)別和抓取。

該套件對(duì)于剛?cè)腴T機(jī)械臂,機(jī)器視覺(jué)的用戶來(lái)說(shuō)是非常有幫助的,能夠帶你快速的了解人工智能項(xiàng)目是如何搭建起來(lái)的,進(jìn)一步的了解機(jī)器視覺(jué)是如何跟機(jī)械臂進(jìn)行聯(lián)動(dòng)的。

接下來(lái)我們簡(jiǎn)單了解一下,能夠與aikit套裝適配的三款機(jī)械臂

機(jī)械臂

myPalletizer 260

myPalletizer260是一款四軸的碼垛機(jī)械臂,全包裹輕量級(jí)四軸碼垛機(jī)械臂,整體去鰭設(shè)計(jì),小巧緊湊,便于攜帶。myPalletizer本體重量960g,負(fù)載250g,工作半徑260mm,專為創(chuàng)客,教育設(shè)計(jì),有豐富的擴(kuò)展接口,ai套件模擬工業(yè)場(chǎng)景,可以進(jìn)行機(jī)器視覺(jué)的學(xué)習(xí)。t 套裝適配的三款機(jī)械臂

poYBAGP0eYaAJv85AAVZ_RS0h2o679.png

mechArm 270

mechArm 270 是一款小六軸機(jī)械臂,結(jié)構(gòu)是中心對(duì)稱結(jié)構(gòu)(仿工業(yè)結(jié)構(gòu))。mechArm 270本體重量1kg, 負(fù)載250g,工作半徑270mm,設(shè)計(jì)緊湊便攜,小巧但功能強(qiáng)大,操作簡(jiǎn)單,能與人協(xié)同、安全工作。

poYBAGP0ecCAUyRIAAw9CE7ZCn0611.png

myCobot 280

myCobot 280 是世界上最小最輕的六軸協(xié)作機(jī)械臂(UR結(jié)構(gòu)),可以根據(jù)用戶需求進(jìn)行二次開發(fā),實(shí)現(xiàn)用戶個(gè)性化定制。myCobot 本體自重850g,有效負(fù)載250g,有效工作半徑280mm,體積小巧但功能強(qiáng)大,既可搭配多種末端執(zhí)行器適配多種應(yīng)用場(chǎng)景,也可支持多平臺(tái)軟件的二次開發(fā),滿足科研教育、智能家居,商業(yè)探索等各種場(chǎng)景需求。

pYYBAGP0eeyAQLfLAAKnA9CSQqQ245.png

我們先來(lái)看個(gè)視頻aikit 是如何跟這三款機(jī)械臂運(yùn)行的。

內(nèi)容

視頻地址https://youtu.be/9J2reiPYNxg

視頻內(nèi)容展現(xiàn)了,顏色識(shí)別和智能分揀功能,還有圖像識(shí)別和智能分揀功能。

我們簡(jiǎn)單介紹一下 aikit 是如何實(shí)現(xiàn)的。(以顏色識(shí)別和智能分揀功能為例)

該人工智能項(xiàng)目主要運(yùn)用到了兩個(gè)模塊

●視覺(jué)處理模塊

●計(jì)算模塊(處理eye to hand的之間的換算)

視覺(jué)處理模塊:

OpenCV (Open Source Computer Vision) 是一個(gè)開源的計(jì)算機(jī)視覺(jué)庫(kù),用于開發(fā)計(jì)算機(jī)視覺(jué)應(yīng)用程序。OpenCV 包含了大量用于圖像處理、視頻分析、基于深度學(xué)習(xí)的目標(biāo)檢測(cè)和識(shí)別等功能的函數(shù)和算法。

poYBAGP0elKAMLlSAAAGwzpIfvQ280.png

我們使用了OpenCV來(lái)對(duì)圖像進(jìn)行處理。從攝像頭得到的視頻進(jìn)行處理,從而獲取視頻中的信息例如顏色,圖像,視頻中的平面坐標(biāo)(x,y)等。將獲取到的信息傳遞給處理器進(jìn)行下一步的處理。

下面是處理圖像的部分代碼(顏色識(shí)別)

# detect cube color
def color_detect(self, img):
	# set the arrangement of color'HSV
	x = y = 0
	gs_img = cv2.GaussianBlur(img, (3, 3), 0) # Gaussian blur
	# transfrom the img to model of gray
	hsv = cv2.cvtColor(gs_img, cv2.COLOR_BGR2HSV)

	for mycolor, item in self.HSV.items():
		redLower = np.array(item[0])
		redUpper = np.array(item[1])
		# wipe off all color expect color in range
		mask = cv2.inRange(hsv, item[0], item[1])
		# a etching operation on a picture to remove edge roughness
		erosion = cv2.erode(mask, np.ones((1, 1), np.uint8), iterations=2)
		# the image for expansion operation, its role is to deepen the color depth in the picture
		dilation = cv2.dilate(erosion, np.ones(
			(1, 1), np.uint8), iterations=2)


		# adds pixels to the image
		target = cv2.bitwise_and(img, img, mask=dilation)
		# the filtered image is transformed into a binary image and placed in binary
		ret, binary = cv2.threshold(dilation, 127, 255, cv2.THRESH_BINARY)
		# get the contour coordinates of the image, where contours is the coordinate value, here only the contour is detected
		contours, hierarchy = cv2.findContours(
			dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

		if len(contours) > 0:
			# do something about misidentification
			boxes = [
				box
			for box in [cv2.boundingRect(c) for c in contours]
			if min(img.shape[0], img.shape[1]) / 10
			< min(box[2], box[3])
			< min(img.shape[0], img.shape[1]) / 1
			]
			if boxes:
				for box in boxes:
					x, y, w, h = box
				# find the largest object that fits the requirements
				c = max(contours, key=cv2.contourArea)
				# get the lower left and upper right points of the positioning object
				x, y, w, h = cv2.boundingRect(c)
				# locate the target by drawing rectangle
				cv2.rectangle(img, (x, y), (x+w, y+h), (153, 153, 0), 2)
				# calculate the rectangle center
				x, y = (x*2+w)/2, (y*2+h)/2
				# calculate the real coordinates of mycobot relative to the target
				if mycolor == "red":
					self.color = 0

				elif mycolor == "green":
					self.color = 1

				elif mycolor == "cyan" or mycolor == "blue":
					self.color = 2

				else:
					self.color = 3


		if abs(x) + abs(y) > 0:
			return x, y
		else:
			return None

只是獲取我們的圖像信息還不夠,得處理得到的信息,傳遞給機(jī)械臂去執(zhí)行命令。這里就運(yùn)用到了計(jì)算模塊。

計(jì)算模塊

NumPy (Numerical Python) 是一個(gè)開源的 Python 庫(kù),主要用于數(shù)學(xué)計(jì)算。NumPy 提供了大量用于科學(xué)計(jì)算的函數(shù)和算法,包括矩陣運(yùn)算、線性代數(shù)、隨機(jī)數(shù)生成、傅里葉變換等。

我們要處理圖像上的坐標(biāo),換算成真實(shí)的坐標(biāo),這有一個(gè)專業(yè)名詞就是eye to hand。我們用python通過(guò)numpy計(jì)算庫(kù)來(lái)計(jì)算我們的坐標(biāo),最后發(fā)送給機(jī)械臂去執(zhí)行分揀。

下面是計(jì)算的部分代碼

    while cv2.waitKey(1) < 0:
       # read camera
        _, frame = cap.read()
        # deal img
        frame = detect.transform_frame(frame)
        if _init_ > 0:
            _init_ -= 1
            continue
        # calculate the parameters of camera clipping
        if init_num < 20:
            if detect.get_calculate_params(frame) is None:
                cv2.imshow("figure", frame)
                continue
            else:
                x1, x2, y1, y2 = detect.get_calculate_params(frame)
                detect.draw_marker(frame, x1, y1)
                detect.draw_marker(frame, x2, y2)
                detect.sum_x1 += x1
                detect.sum_x2 += x2
                detect.sum_y1 += y1
                detect.sum_y2 += y2
                init_num += 1
                continue
        elif init_num == 20:
            detect.set_cut_params(
                (detect.sum_x1)/20.0,
                (detect.sum_y1)/20.0,
                (detect.sum_x2)/20.0,
                (detect.sum_y2)/20.0,
            )
            detect.sum_x1 = detect.sum_x2 = detect.sum_y1 = detect.sum_y2 = 0
            init_num += 1
            continue

        # calculate params of the coords between cube and mycobot
        if nparams < 10:
            if detect.get_calculate_params(frame) is None:
                cv2.imshow("figure", frame)
                continue
            else:
                x1, x2, y1, y2 = detect.get_calculate_params(frame)
                detect.draw_marker(frame, x1, y1)
                detect.draw_marker(frame, x2, y2)
                detect.sum_x1 += x1
                detect.sum_x2 += x2
                detect.sum_y1 += y1
                detect.sum_y2 += y2
                nparams += 1
                continue
        elif nparams == 10:
            nparams += 1
            # calculate and set params of calculating real coord between cube and mycobot
            detect.set_params(
                (detect.sum_x1+detect.sum_x2)/20.0,
                (detect.sum_y1+detect.sum_y2)/20.0,
                abs(detect.sum_x1-detect.sum_x2)/10.0 +
                abs(detect.sum_y1-detect.sum_y2)/10.0
            )
            print ("ok")
            continue

        # get detect result
        detect_result = detect.color_detect(frame)
        if detect_result is None:
            cv2.imshow("figure", frame)
            continue
        else:
            x, y = detect_result
            # calculate real coord between cube and mycobot
            real_x, real_y = detect.get_position(x, y)
            if num == 20:
                detect.pub_marker(real_sx/20.0/1000.0, real_sy/20.0/1000.0)
                detect.decide_move(real_sx/20.0, real_sy/20.0, detect.color)
                num = real_sx = real_sy = 0

            else:
                num += 1
                real_sy += real_y
                real_sx += real_x

我們的項(xiàng)目是開源的可以在GitHub上找到

https://github.com/elephantrobotics/mycobot_ros/blob/noetic/mycobot_ai/ai_mycobot_280/scripts/advance_detect_obj_color.py

區(qū)別

在比較了視頻和內(nèi)容還有程序的代碼,這三款機(jī)械臂的框架是一樣的,只需要在數(shù)據(jù)上稍微作以修改就能夠運(yùn)行成功。

比較這三款機(jī)械臂有什么不同,大致有兩點(diǎn)。

其一本質(zhì)上就是來(lái)比較四軸和六軸的機(jī)械臂在實(shí)際的運(yùn)用中有什么不同點(diǎn)。(myPalletizer 和mechArm/myCobot之間的對(duì)比)

我們來(lái)看一下四軸機(jī)械臂和六軸機(jī)械臂之間粗略的對(duì)比

pYYBAGP0fGCAVmx8AAGdos0GCR4625.png

從視頻中可以看出,不論是四軸機(jī)械臂還是六軸機(jī)械臂在AI Kit 所工作的范圍都是足夠的,它們兩者最大的區(qū)別就是在程序啟動(dòng)的過(guò)程中,myPalletizer的動(dòng)作簡(jiǎn)單快捷,只有四個(gè)關(guān)節(jié)在運(yùn)動(dòng),能夠高效且穩(wěn)定的執(zhí)行任務(wù);myCobot需要調(diào)動(dòng)六個(gè)關(guān)節(jié),比myPalletizer多兩個(gè)關(guān)節(jié),在程序中的計(jì)算量是比myPalletizer的計(jì)算量要大,所花費(fèi)的時(shí)間要長(zhǎng)一些(小型場(chǎng)景)。

我們簡(jiǎn)單總結(jié)一下,在場(chǎng)景固定的情況下,我們?cè)诳紤]如何選擇機(jī)械臂的時(shí)候可以優(yōu)先考慮機(jī)械臂的工作范圍。在符合工作范圍的機(jī)械臂的情況下,高效和穩(wěn)定將是必要的條件。假如說(shuō)現(xiàn)在有一個(gè)工業(yè)場(chǎng)景類似于我們的AI kit的話,四軸機(jī)械臂將會(huì)是優(yōu)先選擇。當(dāng)然六軸機(jī)械臂可以在更大的空間范圍內(nèi)操作,并且可以實(shí)現(xiàn)更復(fù)雜的運(yùn)動(dòng)。它們可以在空間內(nèi)進(jìn)行回轉(zhuǎn)運(yùn)動(dòng),而四軸機(jī)械臂則無(wú)法做到這一點(diǎn)。因此,六軸機(jī)械臂通常更適合用于需要精確操作、復(fù)雜運(yùn)動(dòng)的工業(yè)應(yīng)用。

其二兩款都是六軸機(jī)械臂,他們最主要的不同是結(jié)構(gòu)的不同。mechArm是中心對(duì)稱結(jié)構(gòu)的機(jī)械臂,myCobot是UR結(jié)構(gòu)的協(xié)作型機(jī)械臂。我們可以比較這兩種結(jié)構(gòu)在實(shí)際運(yùn)用場(chǎng)景中有何不同。

pYYBAGP0fH-AHsJKAAYGVDoiWMI132.png

這里是這兩款機(jī)械臂的參數(shù)規(guī)格

pYYBAGP0fKCAOiG9AAX6GJYuYEY203.png

這兩者的結(jié)構(gòu)不同導(dǎo)致了它們運(yùn)動(dòng)的范圍不一樣。以mechArm為例,中心對(duì)稱結(jié)構(gòu)的機(jī)械臂是由三對(duì)相對(duì)的關(guān)節(jié)組成的,每對(duì)關(guān)節(jié)的運(yùn)動(dòng)方向相反。這種結(jié)構(gòu)的機(jī)械臂具有較好的平衡性,能夠抵消關(guān)節(jié)間的力矩,使機(jī)械臂保持穩(wěn)定。

poYBAGP0fLuAEEZSAAy_-4LGlFo603.png

在視頻中展示,mechArm在運(yùn)行中也是比較穩(wěn)定的。

看到這你可能就會(huì)產(chǎn)生疑問(wèn),那myCobot不就一無(wú)是處了嘛?當(dāng)然不是,UR結(jié)構(gòu)的機(jī)械臂更加靈活,能夠?qū)崿F(xiàn)更大范圍的運(yùn)動(dòng),適用于較大的應(yīng)用場(chǎng)合。myCobot更重要的一點(diǎn)它是協(xié)作型機(jī)械臂,它具有較好的人機(jī)交互能力,能夠與人類協(xié)作進(jìn)行工作。六軸協(xié)作型機(jī)械臂通常用于生產(chǎn)線上的物流和裝配工作,以及醫(yī)療、研究和教育等領(lǐng)域。

總結(jié)

就如開頭所說(shuō),AI kit套裝搭載三款機(jī)械臂的不同本質(zhì)上是如何選擇一款合適的機(jī)械臂來(lái)使用。如果你是出于某個(gè)特定的場(chǎng)景去選擇機(jī)械臂的話,就需要根據(jù)場(chǎng)景的需求,例如確定機(jī)械臂的工作半徑,使用的環(huán)境,機(jī)械臂的負(fù)載等方面。

如果你是想要學(xué)習(xí)機(jī)械臂相關(guān)知識(shí)的話,就可以選擇一款目前市面上主流的機(jī)械臂從而開展學(xué)習(xí)。myPalletizer是以碼垛機(jī)械臂為原型設(shè)計(jì)的,主要用于實(shí)現(xiàn)貨物的碼垛和托盤裝卸工作;mechArm 是以主流的工業(yè)型機(jī)械臂為原型設(shè)計(jì)的,因?yàn)樗慕Y(jié)構(gòu)特殊在運(yùn)行的時(shí)候可以保持機(jī)械臂的穩(wěn)定;myCobot是以協(xié)作型機(jī)械臂為原型設(shè)計(jì)的,該結(jié)構(gòu)是近年來(lái)熱門的機(jī)械臂,能夠與人類協(xié)同工作,可以提供人類的力量和精度。

以上就是本篇文章的全部?jī)?nèi)容了,未來(lái),機(jī)械臂技術(shù)將繼續(xù)發(fā)展,為人類生產(chǎn)、工作、生活帶來(lái)更多的便利。如果你喜歡這篇文章請(qǐng)給我們留言點(diǎn)贊!

審核編輯黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器人
    +關(guān)注

    關(guān)注

    213

    文章

    30310

    瀏覽量

    218459
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49538

    瀏覽量

    259386
  • 機(jī)械臂
    +關(guān)注

    關(guān)注

    13

    文章

    570

    瀏覽量

    25877
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    利用超微型 Neuton ML 模型解鎖 SoC 邊緣人工智能

    的框架小 10 倍,速度也快 10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文中,我們將介紹這對(duì)開發(fā)人員意味著什么,以及使用 Neuton 模型如何改進(jìn)您的開發(fā)和終端
    發(fā)表于 08-31 20:54

    人工智能+”,走老路難賺到新錢

    昨天的“人工智能+”刷屏了,這算是官方第一次對(duì)“人工智能+”這個(gè)名稱定性吧?今年年初到現(xiàn)在,涌現(xiàn)出了一大批基于人工智能的創(chuàng)業(yè)者,這已經(jīng)算是AI2.0時(shí)代的第三波創(chuàng)業(yè)潮了,第一波是基礎(chǔ)大
    的頭像 發(fā)表于 08-27 13:21 ?423次閱讀
    “<b class='flag-5'>人工智能</b>+”,走老路難賺到新錢

    挖到寶了!人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器

    和生態(tài)體系帶到使用者身邊 ,讓我們?cè)诩夹g(shù)學(xué)習(xí)和使用上不再受制于人。 三、多模態(tài)實(shí)驗(yàn),解鎖AI全流程 它嵌入了2D視覺(jué)、深度視覺(jué)、機(jī)械手臂、語(yǔ)音識(shí)別、嵌入式傳感器等多種類AI模塊,涵蓋人工智能領(lǐng)域主要
    發(fā)表于 08-07 14:30

    挖到寶了!比鄰星人工智能綜合實(shí)驗(yàn)箱,高校新工科的寶藏神器!

    和生態(tài)體系帶到使用者身邊 ,讓我們?cè)诩夹g(shù)學(xué)習(xí)和使用上不再受制于人。 三、多模態(tài)實(shí)驗(yàn),解鎖AI全流程 它嵌入了2D視覺(jué)、深度視覺(jué)、機(jī)械手臂、語(yǔ)音識(shí)別、嵌入式傳感器等多種類AI模塊,涵蓋人工智能領(lǐng)域主要
    發(fā)表于 08-07 14:23

    超小型Neuton機(jī)器學(xué)習(xí)模型, 在任何系統(tǒng)級(jí)芯片(SoC)上解鎖邊緣人工智能應(yīng)用.

    Neuton 是一家邊緣AI 公司,致力于讓機(jī)器 學(xué)習(xí)模型更易于使用。它創(chuàng)建的模型比競(jìng)爭(zhēng)對(duì)手的框架小10 倍,速度也快10 倍,甚至可以在最先進(jìn)的邊緣設(shè)備上進(jìn)行人工智能處理。在這篇博文中,我們將介紹
    發(fā)表于 07-31 11:38

    迅為RK3588開發(fā)板Linux安卓麒麟瑞芯微國(guó)產(chǎn)工業(yè)AI人工智能

    迅為RK3588開發(fā)板Linux安卓麒麟瑞芯微國(guó)產(chǎn)工業(yè)AI人工智能
    發(fā)表于 07-14 11:23

    最新人工智能硬件培訓(xùn)AI基礎(chǔ)入門學(xué)習(xí)課程參考2025版(離線AI語(yǔ)音視覺(jué)識(shí)別篇)

    端側(cè)離線 AI 智能硬件作為 AI 技術(shù)的重要載體之一,憑借其無(wú)需依賴網(wǎng)絡(luò)即可實(shí)現(xiàn)智能功能的特性,在一些網(wǎng)絡(luò)條件受限或?qū)?shù)據(jù)隱私有較高要求的場(chǎng)景中,發(fā)揮著不可或缺的作用。本章基于CSK
    發(fā)表于 07-04 11:14

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會(huì)發(fā)展的當(dāng)下,無(wú)論是探索未來(lái)職業(yè)方向,還是更新技術(shù)儲(chǔ)備,掌握大模型知識(shí)都已成為新時(shí)代的必修課。從職場(chǎng)上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的智能工具,大模型正在工作生活
    發(fā)表于 07-04 11:10

    開售RK3576 高性能人工智能主板

    ,HDMI-4K 輸出,支 持千兆以太網(wǎng),WiFi,USB 擴(kuò)展/重力感應(yīng)/RS232/RS485/IO 擴(kuò)展/I2C 擴(kuò)展/MIPI 攝像頭/紅外遙控 器等功能,豐富的接口,一個(gè)全新八核擁有超強(qiáng)性能的人工智能
    發(fā)表于 04-23 10:55

    AI人工智能隱私保護(hù)怎么樣

    在當(dāng)今科技飛速發(fā)展的時(shí)代,AI人工智能已經(jīng)深入到我們生活的方方面面,從醫(yī)療診斷到交通調(diào)度,從教育輔助到娛樂(lè)互動(dòng),其影響力無(wú)處不在。然而,隨著AI人工智能的廣泛應(yīng)用,其安全性問(wèn)題也備受關(guān)
    的頭像 發(fā)表于 03-11 09:46 ?787次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>人工智能</b>隱私保護(hù)怎么樣

    Stellantis與Mistral AI深化人工智能合作

    近日,Stellantis宣布與Mistral AI進(jìn)一步擴(kuò)大人工智能戰(zhàn)略合作伙伴關(guān)系,旨在將人工智能技術(shù)深度整合到車輛工程、車內(nèi)體驗(yàn)等多個(gè)關(guān)鍵領(lǐng)域,共同推動(dòng)汽車行業(yè)的智能化發(fā)展。
    的頭像 發(fā)表于 02-11 15:50 ?605次閱讀

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    作者:DigiKey Editor 人工智能AI)已經(jīng)是當(dāng)前科技業(yè)最熱門的話題,且其應(yīng)用面涉及人類生活的各個(gè)領(lǐng)域,對(duì)于各個(gè)產(chǎn)業(yè)都帶來(lái)相當(dāng)重要的影響,且即將改變?nèi)祟愇磥?lái)發(fā)展的方方面面。本文將為您介紹
    的頭像 發(fā)表于 01-25 17:37 ?1396次閱讀
    <b class='flag-5'>人工智能</b>和機(jī)器學(xué)習(xí)以及Edge <b class='flag-5'>AI</b>的概念與應(yīng)用

    潤(rùn)芯微科技獲評(píng)2024 AI蘇州“人工智能+”融合應(yīng)用企業(yè)

    日前,AI蘇州年度大會(huì)暨人工智能融合應(yīng)用發(fā)展峰會(huì)在蘇州舉行。此次大會(huì)由蘇州市人工智能行業(yè)協(xié)會(huì)主辦,以“邁向AI+產(chǎn)業(yè)革新時(shí)代”為主題,近400位來(lái)自
    的頭像 發(fā)表于 12-23 10:15 ?775次閱讀

    微軟AI CEO蘇萊曼談對(duì)于人工智能的未來(lái)發(fā)展

    日前,微軟 AI CEO 穆斯塔法·蘇萊曼在清華大學(xué)的演講中,分享了他對(duì)人工智能未來(lái)發(fā)展的深刻洞見。蘇萊曼提出了三個(gè)對(duì)于 AI 的核心觀點(diǎn)——首先,他強(qiáng)調(diào),發(fā)展人工智能的目標(biāo)應(yīng)當(dāng)是服務(wù)
    的頭像 發(fā)表于 11-15 13:53 ?860次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    嵌入式和人工智能究竟是什么關(guān)系? 嵌入式系統(tǒng)是一種特殊的系統(tǒng),它通常被嵌入到其他設(shè)備或機(jī)器中,以實(shí)現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強(qiáng)的適應(yīng)性和靈活性,能夠根據(jù)用戶需求進(jìn)行定制化設(shè)計(jì)。它廣泛應(yīng)用于各種
    發(fā)表于 11-14 16:39