chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

梅拉妮·米歇爾訪談:人工智能十二問(wèn)

AI智勝未來(lái) ? 來(lái)源:New Scientist官網(wǎng) ? 2023-04-27 11:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)語(yǔ)

過(guò)去幾年,人工智能一直是熱點(diǎn)話題,而近幾個(gè)月伴隨著ChatGPT的橫空出世,關(guān)于人工智能的討論更是不勝枚舉。支撐ChatGPT的是一個(gè)名為GPT-3.5的大語(yǔ)言模型(LLMs),能夠生成流利的文本,并回答各種問(wèn)題。而今年3月發(fā)布的最新版本GPT-4則更上一層樓,可執(zhí)行超出訓(xùn)練范圍的任務(wù),展現(xiàn)出通用人工智能的跡象。

那么這些人工智能模型到底有多聰明?它們的崛起對(duì)人類又意味著什么? 《新科學(xué)雜志》就此采訪了計(jì)算機(jī)科學(xué)家梅蘭妮·米切爾,向其提出了十二個(gè)問(wèn)題,以下為訪談紀(jì)要。

一、為何目前人們都將目光轉(zhuǎn)向人工智能?

ChatGPT等大語(yǔ)言模型對(duì)公眾開(kāi)放,任何人都可使用這些模型,了解其能力。大語(yǔ)言模型進(jìn)入飛速發(fā)展階段。過(guò)去五年,大語(yǔ)言模型逐步發(fā)展成熟,經(jīng)過(guò)訓(xùn)練后能夠生成媲美人類作家的文本。這種“類人智能”表現(xiàn)讓人們不禁產(chǎn)生錯(cuò)覺(jué),電影和科幻小說(shuō)中所描述的人工智能終于出現(xiàn)了,人們對(duì)此感到好奇,同時(shí)也感到一些恐懼。

二、如今,生成式人工智能已發(fā)展到何種水平?我們?cè)撊绾螌?duì)其進(jìn)行評(píng)估?

有關(guān)人工智能水平的爭(zhēng)論有很多,造成這種局面的原因在于智力、認(rèn)知和意識(shí)等我們所關(guān)心的這些概念定義不明;其次,這些人工智能模型的運(yùn)行機(jī)制與人類思維非常不同。最近,我們看到GPT-4成功通過(guò)了美國(guó)律師資格考試,如果一個(gè)人成功通過(guò)資格考試,我們一般會(huì)認(rèn)為他擁有很高的一般智力,但誰(shuí)能斷言這樣的測(cè)試同樣適用于評(píng)估人工智能呢?

三、這些大語(yǔ)言模型本質(zhì)是什么?其智能水平如何?

讓我們從簡(jiǎn)單的語(yǔ)言模型概念講起。選取一個(gè)短語(yǔ),比如“綠色青蛙”,然后在大量的文本中搜索這一短語(yǔ),看看哪些單詞通常跟在這個(gè)短語(yǔ)后面,如“跳躍”或“游泳”,但不太可能是“花椰菜”。每個(gè)單詞出現(xiàn)在這個(gè)短語(yǔ)之后的概率是多少?通過(guò)存儲(chǔ)大量可能出現(xiàn)的單詞序列概率,可以從文本提示開(kāi)始查找下一個(gè)最可能的單詞是什么,這就是簡(jiǎn)單語(yǔ)言模型的工作原理

現(xiàn)在巨大的神經(jīng)網(wǎng)絡(luò)模型執(zhí)行這個(gè)計(jì)算單詞概率的任務(wù),并用大量的文本訓(xùn)練它。這些巨大的神經(jīng)網(wǎng)絡(luò)模型被稱為“大語(yǔ)言模型”,可以學(xué)習(xí)短語(yǔ)之間非常復(fù)雜的統(tǒng)計(jì)關(guān)聯(lián)。問(wèn)題在于,由于神經(jīng)網(wǎng)絡(luò)模型及其操作的復(fù)雜性,很難深入了解并確切說(shuō)出為預(yù)測(cè)下一個(gè)單詞其受到的訓(xùn)練。

四、既然這些大語(yǔ)言模型實(shí)際所做的只是預(yù)測(cè)下一個(gè)單詞,為何說(shuō)已經(jīng)堪比人類智能了?

我們很難評(píng)估語(yǔ)言模型的智能水平,盡管如此,當(dāng)前還是存在三種基本的評(píng)估方法,分別為:

一是與語(yǔ)言模型進(jìn)行互動(dòng),通過(guò)交談、問(wèn)問(wèn)題和出謎語(yǔ),測(cè)試語(yǔ)言模型的反應(yīng),進(jìn)而做出判斷。這類似于圖靈測(cè)試,即機(jī)器是否具備人類的能力?而問(wèn)題在于人類習(xí)慣將智能歸功于非智能因素;

二是做一些邏輯對(duì)比試驗(yàn),如給人工智能模型兩個(gè)句子組合。一個(gè)組合中,第一個(gè)句子與第二個(gè)句子存在邏輯聯(lián)系,而另一個(gè)組合的句子間沒(méi)有邏輯聯(lián)系。這些大語(yǔ)言模型在判斷句子邏輯關(guān)聯(lián)方面非常優(yōu)秀。但事實(shí)往往證明,它們做得好并不是因?yàn)槟芟袢祟惸菢永斫饩渥?,而是使用了統(tǒng)計(jì)關(guān)聯(lián)方法;

三是可以從神經(jīng)網(wǎng)絡(luò)模型入手,試著了解機(jī)器解決問(wèn)題的機(jī)制。人們正在研究這個(gè)問(wèn)題,但這非常困難,因?yàn)檫@個(gè)系統(tǒng)太復(fù)雜了。所以目前為止還沒(méi)有萬(wàn)無(wú)一失的成型的測(cè)試方法來(lái)評(píng)估這些語(yǔ)言模型的能力。

五、當(dāng)前努力理解人工智能模型的能力是否會(huì)加深對(duì)智能和認(rèn)知的認(rèn)識(shí)?

人工智能的整個(gè)發(fā)展史都是如此。在20世紀(jì)70年代和80年代,很多人都說(shuō),如果人工智能在國(guó)際象棋領(lǐng)域要達(dá)到特級(jí)大師的水平,需要擁有一般人類的智力。然后我們發(fā)明出了“深藍(lán)”(Deep Blue)超級(jí)計(jì)算機(jī),擊敗了國(guó)際象棋大師加里·卡斯帕羅夫(Garry Kasparov)。如今歷史再次重演,規(guī)則再一次被改變。但從更積極的角度來(lái)看,人工智能將繼續(xù)挑戰(zhàn)我們對(duì)智能的概念,或者我們對(duì)認(rèn)知的定義。

我們知道智力有幾種不同的表現(xiàn)形式,例如,人類智能與章魚(yú)的智能非常不同,也與生成式人工智能的能力不同。我們中的一些人一直在用“多元智能”這個(gè)詞來(lái)強(qiáng)調(diào)智能不止一種。我們?nèi)绾蚊枋鲞@些不同的智能?它們有什么共同特點(diǎn)嗎?它們完全不同嗎?這些都是我們需要解決的問(wèn)題。

六、大語(yǔ)言模型有何驚艷之處?

近期常有人將大語(yǔ)言模型的表現(xiàn)稱之為“涌現(xiàn)現(xiàn)象”,即大語(yǔ)言模型不僅具有語(yǔ)言處理能力,而且貌似已具備類似人類的邏輯推理能力,可解答數(shù)學(xué)題、編寫(xiě)計(jì)算機(jī)代碼、分析故事人物性格。然而,人們尚不清楚這一切能力背后的運(yùn)行機(jī)制。大語(yǔ)言模型卓越的表現(xiàn)甚至讓人一度認(rèn)為它們經(jīng)受海量人類文本訓(xùn)練后,可以感知當(dāng)今世界。因此,當(dāng)前困擾大眾的難題就是大語(yǔ)言模型可以像人類一樣進(jìn)行邏輯推理嗎?還是只是通過(guò)復(fù)雜的統(tǒng)計(jì)關(guān)聯(lián)來(lái)運(yùn)行?它為何不能和人類一樣進(jìn)行推理?

七、當(dāng)前對(duì)大語(yǔ)言模型背后的運(yùn)行機(jī)制有何重要認(rèn)識(shí)?

鑒于每月各大科技公司和研究院都會(huì)推出新的大語(yǔ)言模型,開(kāi)發(fā)新的功能,因此現(xiàn)在去解釋其背后的運(yùn)行機(jī)制還為時(shí)尚早。對(duì)于GPT-3,人們至少還能了解其背后的訓(xùn)練數(shù)據(jù)。而到了GPT-4,就無(wú)法做到這一點(diǎn)。OpenAI給出的解釋是,GPT-4作為一款商業(yè)產(chǎn)品,為保持其競(jìng)爭(zhēng)優(yōu)勢(shì),同時(shí)考慮到安全因素,無(wú)法對(duì)外公開(kāi)其訓(xùn)練數(shù)據(jù)。大語(yǔ)言模型的不透明導(dǎo)致無(wú)法研究其背后的運(yùn)行機(jī)制。

八、當(dāng)前人工智能技術(shù)是否已顯露通用人工智能的特征?或者需要另辟蹊徑來(lái)開(kāi)發(fā)通用人工智能?

我們需要先回答:何為通用人工智能?對(duì)此眾說(shuō)紛紜,莫衷一是。因此如果當(dāng)前我們連研究目標(biāo)都沒(méi)有搞清,談何研發(fā)通用人工智能。心理學(xué)界一直有人質(zhì)疑人類是否具備一般智力。人類智力對(duì)人類進(jìn)化歷程的作用十分特殊,并非我們所想的那樣具備一般性?;诖耍艺J(rèn)為單憑大語(yǔ)言模型不斷迭代更新,無(wú)法研制出具有類似人類認(rèn)知能力的人工智能。我們期盼人工智能不僅僅具有語(yǔ)文理解力,還應(yīng)具備視覺(jué)理解力,具備在給定環(huán)境理解并作出正確決策的能力。

為實(shí)現(xiàn)這一點(diǎn),我們將需要開(kāi)發(fā)不同的架構(gòu)。以GPT-4為例,該類語(yǔ)言模型不具備長(zhǎng)時(shí)記憶,因此記不住過(guò)去的對(duì)話,從某種意義上講,它們并不關(guān)心自己過(guò)去講過(guò)什么。有學(xué)者指出,人類大部分智力都是以動(dòng)機(jī)為導(dǎo)向,人類通過(guò)智力實(shí)現(xiàn)進(jìn)化所設(shè)定的目標(biāo)。如果一個(gè)系統(tǒng)沒(méi)有任何動(dòng)機(jī),或者說(shuō)沒(méi)有自己的目標(biāo),將無(wú)法具備類似人類的智能。

九、有人認(rèn)為人工智能將擁有知覺(jué)或有意識(shí),你如何看?

數(shù)千年前,哲學(xué)家就指出,如何知道對(duì)方是否有意識(shí)?人類可以感知自身的意識(shí),而無(wú)法感知他人的意識(shí),對(duì)方也許是頭僵尸呢?同理,我并不清楚何為有意識(shí)的人工智能,而且關(guān)于這一問(wèn)題的爭(zhēng)論永無(wú)定論,因此我不愿意去思考這一問(wèn)題。

十、大語(yǔ)言模型將如何應(yīng)用于日常生活?我們應(yīng)該如何與其相處?

有些應(yīng)用平平無(wú)奇,如幫助寫(xiě)郵件或者報(bào)告,提升人類工作效率;有些應(yīng)用也許顛覆想象,這很難預(yù)測(cè),如代替律師訴訟,幫助醫(yī)生診斷疾病,制定醫(yī)療方案。對(duì)此,我無(wú)法預(yù)測(cè)。但就目前而言,大語(yǔ)言模型仍存在許多缺點(diǎn),需要人類對(duì)其監(jiān)管。人類需要具備辨別真假信息的能力,而這正是目前大語(yǔ)言模型的一個(gè)致命弱點(diǎn)。

十一、上個(gè)月,數(shù)千名人工智能領(lǐng)域知名專家學(xué)者聯(lián)名簽署一封公開(kāi)信,呼吁暫停人工智能研究。當(dāng)前我們的步子邁得太快了嗎?

也許是這樣的。政策法規(guī)往往跟不上技術(shù)的發(fā)展速度。對(duì)于人工智能而言,在醫(yī)療、法律、新聞業(yè)等領(lǐng)域部署人工智能系統(tǒng)存在諸多風(fēng)險(xiǎn)。盡管如此,我并沒(méi)有簽署那封信,因?yàn)樵摴_(kāi)信泥沙俱下,其中一些風(fēng)險(xiǎn)真實(shí)存在,而有些風(fēng)險(xiǎn)存在夸大之嫌。其所描繪的人工智能危機(jī)無(wú)法令人信服。我認(rèn)為需要對(duì)人工智能進(jìn)行監(jiān)管。即便是人工智能技術(shù)的日常應(yīng)用也存在諸多風(fēng)險(xiǎn),如偏見(jiàn)和不實(shí)信息。但我認(rèn)為暫停人工智能技術(shù)研發(fā)并非良策。相反,我們應(yīng)該了解其訓(xùn)練數(shù)據(jù),而不應(yīng)單純相信OpenAI所說(shuō)的“相信我們,我們知道自己在做些什么”。

十二、你如何評(píng)價(jià)當(dāng)前人工智能技術(shù)的風(fēng)險(xiǎn)與益處?

首先,這些系統(tǒng)尚不可靠,也不具備意識(shí),無(wú)法決定是否會(huì)做出對(duì)人類有害的事,真正可能造成傷害的是使用這些系統(tǒng)的人類,因此我們需要對(duì)其進(jìn)行監(jiān)管;

其次,我們尚未搞清人工智能的運(yùn)行機(jī)制,但這并不意味著人工智能很神秘,只是非常復(fù)雜罷了。只要不斷鉆研下去,人類遲早會(huì)完全理解人工智能的運(yùn)行機(jī)制。要想做到這一點(diǎn),就不能讓這些系統(tǒng)都掌握在商業(yè)公司手中。這些語(yǔ)言模型提供了一個(gè)契機(jī),幫助我們加深對(duì)認(rèn)知力的認(rèn)識(shí)。從它們身上,我們可以更好地理解人類自身,如人類智力的作用機(jī)制,一般智力如何發(fā)揮多樣作用。不過(guò)與此同時(shí),我們必須保持清醒的認(rèn)識(shí),警惕在現(xiàn)實(shí)世界中部署此類模型所涉及的危險(xiǎn)、風(fēng)險(xiǎn)和問(wèn)題。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103636
  • 人工智能
    +關(guān)注

    關(guān)注

    1807

    文章

    49029

    瀏覽量

    249564
  • 語(yǔ)言模型
    +關(guān)注

    關(guān)注

    0

    文章

    561

    瀏覽量

    10792

原文標(biāo)題:梅拉妮·米歇爾訪談:人工智能十二問(wèn)

文章出處:【微信號(hào):AI智勝未來(lái),微信公眾號(hào):AI智勝未來(lái)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    迅為RK3588開(kāi)發(fā)板Linux安卓麒麟瑞芯微國(guó)產(chǎn)工業(yè)AI人工智能

    迅為RK3588開(kāi)發(fā)板Linux安卓麒麟瑞芯微國(guó)產(chǎn)工業(yè)AI人工智能
    發(fā)表于 07-14 11:23

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門(mén)學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會(huì)發(fā)展的當(dāng)下,無(wú)論是探索未來(lái)職業(yè)方向,還是更新技術(shù)儲(chǔ)備,掌握大模型知識(shí)都已成為新時(shí)代的必修課。從職場(chǎng)上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的智能工具,大模型正在工作生活
    發(fā)表于 07-04 11:10

    開(kāi)售RK3576 高性能人工智能主板

    ,HDMI-4K 輸出,支 持千兆以太網(wǎng),WiFi,USB 擴(kuò)展/重力感應(yīng)/RS232/RS485/IO 擴(kuò)展/I2C 擴(kuò)展/MIPI 攝像頭/紅外遙控 器等功能,豐富的接口,一個(gè)全新八核擁有超強(qiáng)性能的人工智能
    發(fā)表于 04-23 10:55

    嵌入式和人工智能究竟是什么關(guān)系?

    嵌入式和人工智能究竟是什么關(guān)系? 嵌入式系統(tǒng)是一種特殊的系統(tǒng),它通常被嵌入到其他設(shè)備或機(jī)器中,以實(shí)現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強(qiáng)的適應(yīng)性和靈活性,能夠根據(jù)用戶需求進(jìn)行定制化設(shè)計(jì)。它廣泛應(yīng)用于各種
    發(fā)表于 11-14 16:39

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    幸得一好書(shū),特此來(lái)分享。感謝平臺(tái),感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學(xué)領(lǐng)域中的巨大潛力和廣泛應(yīng)用。這一章詳細(xì)
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    很幸運(yùn)社區(qū)給我一個(gè)閱讀此書(shū)的機(jī)會(huì),感謝平臺(tái)。 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們揭示了人工智能技術(shù)在生命科學(xué)領(lǐng)域中的廣泛應(yīng)用和深遠(yuǎn)影響。在
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    周末收到一本新書(shū),非常高興,也非常感謝平臺(tái)提供閱讀機(jī)會(huì)。 這是一本挺好的書(shū),包裝精美,內(nèi)容詳實(shí),干活滿滿。 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》這本書(shū)的第一章,作為整個(gè)著作的開(kāi)篇
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    RISC-V在人工智能圖像處理領(lǐng)域的應(yīng)用前景十分廣闊,這主要得益于其開(kāi)源性、靈活性和低功耗等特點(diǎn)。以下是對(duì)RISC-V在人工智能圖像處理應(yīng)用前景的詳細(xì)分析: 一、RISC-V的基本特點(diǎn) RISC-V
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問(wèn)下哪些比較容易學(xué) 不過(guò)好像都是要學(xué)的
    發(fā)表于 09-26 15:24

    智能制造與人工智能的區(qū)別

    智能制造與人工智能在定義、技術(shù)組成、應(yīng)用領(lǐng)域以及發(fā)展重點(diǎn)等方面存在明顯的區(qū)別。
    的頭像 發(fā)表于 09-15 14:27 ?1970次閱讀

    人工智能ai4s試讀申請(qǐng)

    目前人工智能在繪畫(huà)對(duì)話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個(gè)需要研究的課題,本書(shū)對(duì)ai4s基本原理和原則,方法進(jìn)行描訴,有利于總結(jié)經(jīng)驗(yàn),擬按照要求準(zhǔn)備相關(guān)體會(huì)材料??茨芊裼兄谌腴T(mén)和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》 這本書(shū)便將為讀者徐徐展開(kāi)AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學(xué)家做了什么? 人工智能將如何改變我們所生
    發(fā)表于 09-09 13:54

    人工智能從何而來(lái)

    當(dāng)大家都在討論人工智能的時(shí)候,有一個(gè)問(wèn)題似乎很少有人關(guān)注,即:人工智能從何而來(lái)?
    的頭像 發(fā)表于 09-06 09:27 ?1157次閱讀

    報(bào)名開(kāi)啟!深圳(國(guó)際)通用人工智能大會(huì)將啟幕,國(guó)內(nèi)外大咖齊聚話AI

    ,得到了華為、騰訊、優(yōu)必選、中煤科工、中國(guó)聯(lián)通、云天勵(lì)飛、考悠然、智航、力維智聯(lián)等國(guó)內(nèi)人工智能企業(yè)的深度參與和大力支持。 報(bào)名后即可到現(xiàn)場(chǎng)領(lǐng)取禮品,總計(jì)5000份,先到先選! 點(diǎn)擊報(bào)名:https://bbs.elecfans.com/jishu_2447254_1
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個(gè)方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過(guò)程加速:FPGA可以用來(lái)加速深度學(xué)習(xí)的訓(xùn)練和推理過(guò)程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05