chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

韓國政府組建團隊,研發(fā)神經(jīng)網(wǎng)絡(luò)處理器(NPU)芯片

微云疏影 ? 來源:綜合整理 ? 作者:綜合整理 ? 2023-06-27 10:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

據(jù)韓聯(lián)社6月26日報道,韓國政府將與人工智能芯片和云計算企業(yè)聯(lián)合,組成一個團隊,開發(fā)高運算能力和低能耗的神經(jīng)網(wǎng)絡(luò)處理器(npu)推理芯片。這是為了避開nvidia的長期gpu進行競爭。該項目為延長韓國在半導(dǎo)體領(lǐng)域的地位而努力,并為到2030年取得顯著的成果而努力。

科學(xué)技術(shù)信息通訊部長官李宗昊26日主持第三次人工智能半導(dǎo)體戰(zhàn)略對話,公布了“k-云計算”(韓國云計算)項目第一期的出臺。三星電子、sk海力士等大企業(yè)和國內(nèi)ai半導(dǎo)體創(chuàng)業(yè)企業(yè)、云計算領(lǐng)域的企業(yè)參加了當(dāng)天的活動。

據(jù)介紹,韓國npu芯片研發(fā)第一期項目將投資1000億韓元,到2025年完成神經(jīng)網(wǎng)絡(luò)處理器驗證。第二步,到2028年研制出低功耗pim芯片。第三期的目標(biāo)是到2030年為止研究開發(fā)超低電力低電力存儲器芯片。該項目的最終目標(biāo)是到2030年將ai芯片技術(shù)提升到世界第一。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關(guān)注

    關(guān)注

    463

    文章

    53871

    瀏覽量

    463293
  • 云計算
    +關(guān)注

    關(guān)注

    39

    文章

    8010

    瀏覽量

    143889
  • 人工智能
    +關(guān)注

    關(guān)注

    1814

    文章

    49969

    瀏覽量

    263757
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    【新品發(fā)布】艾為重磅發(fā)布端側(cè)AI高性能NPU語音芯片,打造智能語音體驗新標(biāo)桿

    數(shù)模龍頭艾為電子全新推出高性能NPU神經(jīng)網(wǎng)絡(luò)智能語音處理芯片:AWA89601,集成音頻專用NPU神經(jīng)
    的頭像 發(fā)表于 01-07 18:33 ?203次閱讀
    【新品發(fā)布】艾為重磅發(fā)布端側(cè)AI高性能<b class='flag-5'>NPU</b>語音<b class='flag-5'>芯片</b>,打造智能語音體驗新標(biāo)桿

    神經(jīng)網(wǎng)絡(luò)的初步認(rèn)識

    日常生活中的智能應(yīng)用都離不開深度學(xué)習(xí),而深度學(xué)習(xí)則依賴于神經(jīng)網(wǎng)絡(luò)的實現(xiàn)。什么是神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)的核心思想是模仿生物神經(jīng)系統(tǒng)的結(jié)構(gòu),特別是大腦中神經(jīng)
    的頭像 發(fā)表于 12-17 15:05 ?206次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的初步認(rèn)識

    NMSIS神經(jīng)網(wǎng)絡(luò)庫使用介紹

    NMSIS NN 軟件庫是一組高效的神經(jīng)網(wǎng)絡(luò)內(nèi)核,旨在最大限度地提高 Nuclei N 處理器內(nèi)核上的神經(jīng)網(wǎng)絡(luò)的性能并最??大限度地減少其內(nèi)存占用。 該庫分為多個功能,每個功能涵蓋特定類別
    發(fā)表于 10-29 06:08

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    在完成神經(jīng)網(wǎng)絡(luò)量化后,需要將神經(jīng)網(wǎng)絡(luò)部署到硬件加速上。首先需要將所有權(quán)重數(shù)據(jù)以及輸入數(shù)據(jù)導(dǎo)入到存儲內(nèi)。 在仿真環(huán)境下,可將其存于一個文件,并在 Verilog 代碼中通過 read
    發(fā)表于 10-20 08:00

    液態(tài)神經(jīng)網(wǎng)絡(luò)(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的神經(jīng)網(wǎng)絡(luò)

    神經(jīng)元,但卻能產(chǎn)生復(fù)雜的行為。受此啟發(fā),與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)相比,LNN旨在通過模擬大腦中神經(jīng)元之間的動態(tài)連接來處理信息,這種網(wǎng)絡(luò)能夠順序
    的頭像 發(fā)表于 09-28 10:03 ?968次閱讀
    液態(tài)<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>(LNN):時間連續(xù)性與動態(tài)適應(yīng)性的<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    神經(jīng)網(wǎng)絡(luò)的并行計算與加速技術(shù)

    問題。因此,并行計算與加速技術(shù)在神經(jīng)網(wǎng)絡(luò)研究和應(yīng)用中變得至關(guān)重要,它們能夠顯著提升神經(jīng)網(wǎng)絡(luò)的性能和效率,滿足實際應(yīng)用中對快速響應(yīng)和大規(guī)模數(shù)據(jù)處理的需求。神經(jīng)網(wǎng)絡(luò)并行
    的頭像 發(fā)表于 09-17 13:31 ?1020次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的并行計算與加速技術(shù)

    開售RK3576 高性能人工智能主板

    ZYSJ-2476B 高性能智能主板,采用瑞芯微 RK3576 高性能 AI 處理器、神經(jīng)網(wǎng)絡(luò)處理器 NPU, Android 14.0/debian11/ubuntu20.04 操
    發(fā)表于 04-23 10:55

    【「芯片通識課:一本書讀懂芯片技術(shù)」閱讀體驗】從deepseek看今天芯片發(fā)展

    的: 神經(jīng)網(wǎng)絡(luò)處理器NPU)是一種模仿人腦神經(jīng)網(wǎng)絡(luò)的電路系統(tǒng),是實現(xiàn)人工智能中神經(jīng)網(wǎng)絡(luò)計算的專用處理器
    發(fā)表于 04-02 17:25

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?1549次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學(xué)習(xí)模型,具有顯著的優(yōu)點,同時也存在一些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析: 優(yōu)點
    的頭像 發(fā)表于 02-12 15:36 ?1896次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?1475次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的
    的頭像 發(fā)表于 02-12 15:15 ?1614次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負(fù)責(zé)接收外部輸入數(shù)據(jù),這些數(shù)據(jù)隨后被傳遞到隱藏層。隱藏層是BP神經(jīng)網(wǎng)絡(luò)的核心部分,它可以通過一層或多層神經(jīng)元對輸入數(shù)據(jù)進行加權(quán)求和,并通過非線性激活函數(shù)(如ReLU、sigmoid或tanh)進行
    的頭像 發(fā)表于 02-12 15:13 ?1751次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)在圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠?qū)W習(xí)到復(fù)雜的特征表達,適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)在圖像識別中應(yīng)用的分析: 一、BP
    的頭像 發(fā)表于 02-12 15:12 ?1325次閱讀

    NPU是如何發(fā)展起來的?性能受哪些因素影響?

    (電子發(fā)燒友網(wǎng)綜合報道) NPU是一種專門用于加速神經(jīng)網(wǎng)絡(luò)計算的硬件處理器。隨著人工智能和深度學(xué)習(xí)技術(shù)的快速發(fā)展,傳統(tǒng)的CPU和GPU在處理復(fù)雜的
    的頭像 發(fā)表于 02-05 07:50 ?3764次閱讀