chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何選擇并設(shè)計理想RTD溫度檢測系統(tǒng)

jf_pJlTbmA9 ? 來源:jf_pJlTbmA9 ? 作者:jf_pJlTbmA9 ? 2023-07-10 15:16 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

簡介

本系列文章分為上下兩篇。上篇首先討論基于熱敏電阻的溫度測量系統(tǒng)的歷史和設(shè)計挑戰(zhàn),以及它與基于電阻溫度檢測器(RTD)的溫度測量系統(tǒng)的比較。文中還會簡要介紹熱敏電阻選擇、配置權(quán)衡,以及Σ-Δ型模數(shù)轉(zhuǎn)換器(ADC)在該應(yīng)用領(lǐng)域中的重要作用。下篇將詳細介紹如何優(yōu)化和評估基于熱敏電阻的最終測量系統(tǒng)。

熱敏電阻與RTD

正如文章“如何選擇并設(shè)計理想RTD溫度檢測系統(tǒng)”中所討論的,RTD是一種電阻值隨溫度變化的電阻器。熱敏電阻的工作方式與RTD類似。RTD僅有正溫度系數(shù),熱敏電阻則不同,既可以有正溫度系數(shù),也可以有負溫度系數(shù)。負溫度系數(shù)(NTC)熱敏電阻的阻值會隨著溫度升高而減小,而正溫度系數(shù)(PTC)熱敏電阻的阻值會隨著溫度升高而增大。圖1顯示了典型NTC和PTC熱敏電阻的響應(yīng)特性,以及它們與RTD曲線的比較。

1669191369165207.jpg

圖1.熱敏電阻與RTD的響應(yīng)特性比較

在溫度范圍方面,RTD曲線接近線性,而熱敏電阻具有非線性(指數(shù))特性,因此前者覆蓋的溫度范圍(通常為–200°C至+850°C)比后者要寬得多。RTD通常提供眾所周知的標準化曲線,而熱敏電阻曲線則因制造商而異。ADI將在本文的“熱敏電阻選擇指南”部分詳細討論這一點。

熱敏電阻由復合材料——通常是陶瓷、聚合物或半導體(通常是金屬氧化物)——制成,與由純金屬(鉑、鎳或銅)制成的RTD相比,前者要小得多且更便宜,但不如后者堅固。熱敏電阻能夠比RTD更快地檢測溫度變化,從而提供更快的反饋。因此,熱敏電阻傳感器常用于要求低成本、小尺寸、更快響應(yīng)速度、更高靈敏度且溫度范圍受限的應(yīng)用,例如監(jiān)控電子設(shè)備、家庭和樓宇控制、科學實驗室,或商業(yè)或工業(yè)應(yīng)用中的熱電偶所使用的冷端補償。

在大多數(shù)情況下,精密溫度測量應(yīng)用使用NTC熱敏電阻,而非PTC熱敏電阻。有一些PTC熱敏電阻被用于過流輸入保護電路,或用作安全應(yīng)用的可復位保險絲。PTC熱敏電阻的電阻-溫度曲線在達到其切換點(或居里點)之前有一個非常小的NTC區(qū)域;超過切換點之后,在幾攝氏度的范圍內(nèi),其電阻會急劇增加幾個數(shù)量級。因此,在過流情況下,PTC熱敏電阻在超過切換溫度后會產(chǎn)生大量自發(fā)熱,其電阻會急劇增加,導致輸入系統(tǒng)的電流減少,從而防止系統(tǒng)發(fā)生損壞。PTC熱敏電阻的切換點通常在60°C和120°C之間,因此它不適合用在寬溫度范圍應(yīng)用中監(jiān)控溫度測量結(jié)果。ADI將在本文重點介紹能夠測量或監(jiān)控-80°C至+150°C溫度范圍的NTC熱敏電阻。NTC熱敏電阻在25°C時的標稱電阻從幾歐姆到10MΩ不等。如圖1所示,與RTD相比,熱敏電阻每攝氏度的電阻變化更為顯著。熱敏電阻的高靈敏度和高電阻值使得其前端電路比RTD要簡單得多,因為熱敏電阻不需要任何特殊的接線配置(例如3線或4線)來補償引線電阻。熱敏電阻設(shè)計僅使用簡單的2線配置。

表1顯示了RTD、NTC和PTC熱敏電阻的優(yōu)缺點。

1.熱敏電阻與RTD

參數(shù) NTC熱敏電阻 PTC熱敏電阻 RTD
溫度范圍 -80°C至+300°C 60°C至120°C -200°C至+850°C
溫度系數(shù)
線性度 指數(shù)式 指數(shù)式 接近線性
靈敏度
響應(yīng)時間 快速 快速 慢速
激勵 必需 必需 必需
自發(fā)熱
接線配置 2線 2線 2線、3線、4線
成本 便宜到中等 便宜 中等到昂貴
尺寸

基于熱敏電阻的溫度測量挑戰(zhàn)

高精度的熱敏電阻溫度測量需要精密信號調(diào)理、模數(shù)轉(zhuǎn)換、線性化和補償,如圖2所示。盡管信號鏈看起來簡單明了,但其中涉及的幾個復雜因素也會影響整個系統(tǒng)的電路板尺寸、成本和性能。ADI精密ADC產(chǎn)品組合中有幾種集成解決方案,例如AD7124-4/AD7124-8,它們能為溫度系統(tǒng)設(shè)計帶來多方面好處,應(yīng)用所需的大部分構(gòu)建模塊都已內(nèi)置。但是,設(shè)計和優(yōu)化基于熱敏電阻的溫度測量解決方案涉及到多種挑戰(zhàn)。

1669191361773188.jpg

圖2.典型NTC熱敏電阻測量信號鏈模塊

挑戰(zhàn)包括:

市場上有各種各樣的熱敏電阻。

■如何為具體應(yīng)用選擇合適的熱敏電阻?

與RTD一樣,熱敏電阻是無源器件,自身不會產(chǎn)生電氣輸出。使用激勵電流或電壓來測量傳感器的電阻,即讓一個小電流經(jīng)過傳感器以產(chǎn)生電壓。

■如何選擇電流/電壓?

■熱敏電阻信號應(yīng)如何調(diào)理?

■如何調(diào)整上述變量,以便在規(guī)格范圍內(nèi)使用轉(zhuǎn)換器或其他構(gòu)建模塊?

■在一個系統(tǒng)中連接多個熱敏電阻:傳感器如何連接?不同傳感器之間是否能共享一些模塊?對系統(tǒng)整體性能有何影響?

熱敏電阻的一個主要問題是其非線性響應(yīng)和系統(tǒng)精度。

■設(shè)計的預期誤差是多少?

■使用哪些線性化和補償技術(shù)來實現(xiàn)目標性能?

本文將討論所有這些挑戰(zhàn),并就如何解決這些問題和進一步簡化此類系統(tǒng)的設(shè)計過程提供建議。

熱敏電阻選擇指南

當今市場上有很多NTC熱敏電阻可供選擇,為具體應(yīng)用選擇特定的熱敏電阻可能相當具有挑戰(zhàn)性。請注意,熱敏電阻按其標稱值列出,即25°C時的標稱電阻。因此,10kΩ熱敏電阻在25°C時的標稱電阻為10kΩ。熱敏電阻的標稱或基本電阻值從幾歐姆到10MΩ不等。標稱電阻較低(10kΩ或更低)的熱敏電阻,支持的溫度范圍通常也較低,例如-50°C至+70°C。標稱電阻較高的熱敏電阻,可支持最高300°C的溫度。

熱敏電阻元件由金屬氧化物制成。熱敏電阻有珠狀、徑向和SMD等形式。珠狀熱敏電阻采用環(huán)氧樹脂涂層或玻璃封裝,以提供額外保護。環(huán)氧樹脂涂層珠狀熱敏電阻、徑向和SMD熱敏電阻適用于最高150°C的溫度。玻璃涂層珠狀熱敏電阻適用于高溫測量。所有類型熱敏電阻的涂層/封裝還能防止腐蝕。一些熱敏電阻還具有額外的外殼,以在惡劣環(huán)境中提供進一步的保護。與徑向/SMD熱敏電阻相比,珠狀熱敏電阻具有更快的響應(yīng)時間。然而,后者不如前者那么穩(wěn)健。因此,使用何種熱敏電阻取決于最終應(yīng)用和熱敏電阻所處的環(huán)境。熱敏電阻的長期穩(wěn)定性取決于制造材料及其封裝和結(jié)構(gòu)。例如,環(huán)氧樹脂涂層的NTC熱敏電阻每年可能變化0.2°C,而密封的熱敏電阻每年僅變化0.02°C。

不同熱敏電阻有不同的精度。標準熱敏電阻的精度通常為0.5°C至1.5°C。熱敏電阻的標稱電阻值和β值(25°C至50°C/85°C關(guān)系)有一個容差。請注意,熱敏電阻的β值取決于制造商。例如,不同制造商生產(chǎn)的10kΩ NTC熱敏電阻會有不同的β值。對于較高精度的系統(tǒng),可以使用Omega? 44xxx系列等熱敏電阻。在0°C至70°C的溫度范圍內(nèi),其精度為0.1°C或0.2°C。因此,所測量的溫度范圍以及該溫度范圍內(nèi)所需的精度決定了一個熱敏電阻是否適合特定應(yīng)用。請注意,Omega 44xxx系列的精度越高,其成本也越高。

因此,使用何種熱敏電阻取決于:

被測溫度范圍

精度要求

使用熱敏電阻的環(huán)境

長期穩(wěn)定性

線性化:β與Steinhart-Hart方程

為了將電阻轉(zhuǎn)換為攝氏度,通常使用β值。知道兩個溫度點以及每個溫度點對應(yīng)的電阻,便可確定β值。

1669191340511948.jpg

其中:

RT1 = 溫度1時的電阻

RT2 = 溫度2時的電阻

T1 = 溫度1 (K) T2 = 溫度2 (K)

熱敏電阻的數(shù)據(jù)手冊通常會列出兩種情況的β值:

兩個溫度分別為25°C和50°C

兩個溫度分別為25°C和85°C

用戶使用接近設(shè)計所用溫度范圍的β值。大多數(shù)熱敏電阻數(shù)據(jù)手冊在列出β值的同時,還會列出25°C時的電阻容差和β值的容差。

較高精度的熱敏電阻(如Omega 44xxx系列)和較高精度的最終解決方案使用Steinhart-Hart方程將電阻轉(zhuǎn)換為攝氏度。公式2需要三個常數(shù)A、B和C,這些常數(shù)同樣由傳感器制造商提供。公式的系數(shù)是利用三個溫度點生成的,因此所得公式盡可能減少了線性化引入的誤差(線性化引起的誤差通常為0.02°C)。

1669191326969904.jpg

其中:

A、B、C是從三個溫度測試點得出的常數(shù)。

R = 熱敏電阻的阻值,單位為Ω

T = 溫度,單位為K

電流/電壓激勵

圖3顯示了傳感器的電流激勵。將激勵電流作用于熱敏電阻,并將相同電流作用于精密電阻;精密電阻用作測量的參考。參考電阻的值必須大于或等于熱敏電阻的最高電阻值(取決于系統(tǒng)中測量的最低溫度)。選擇激勵電流的大小時,同樣要考慮熱敏電阻的最大電阻值,以確保傳感器和參考電阻兩端產(chǎn)生的電壓始終處于電子設(shè)備可接受的水平。激勵電流源需要一定的裕量或輸出順從性。如果熱敏電阻在所測量的最低溫度時具有較大電阻,則激勵電流值將非常低。因此,高溫下熱敏電阻兩端產(chǎn)生的電壓很小。為了優(yōu)化這些低電平信號的測量,可以使用可編程增益級。然而,增益需要動態(tài)編程,因為來自熱敏電阻的信號電平會隨溫度發(fā)生顯著變化。

1669191321816994.jpg

圖3.熱敏電阻的電流激勵

另一個方案是設(shè)置增益但使用動態(tài)激勵電流。當來自熱敏電阻的信號電平發(fā)生變化時,激勵電流值也會動態(tài)變化,使得熱敏電阻兩端產(chǎn)生的電壓處于電子設(shè)備的額定輸入范圍內(nèi)。用戶必須確保參考電阻兩端產(chǎn)生的電壓也處于電子設(shè)備可接受的水平。這兩種方案都需要高水平的控制,持續(xù)監(jiān)測熱敏電阻兩端的電壓,以確保信號能被電子設(shè)備測量。有沒有更簡單的方案?下面來看看電壓激勵。

1669191313339496.jpg

圖4.熱敏電阻的電壓激勵

當熱敏電阻由恒定電壓激勵時,通過熱敏電阻的電流將隨著熱敏電阻阻值的變化而自動縮放?,F(xiàn)在使用精密檢測電阻,而不使用參考電阻,其目的是計算流過熱敏電阻的電流,這樣就能計算出熱敏電阻的阻值。由于激勵電壓也用作ADC基準電壓,因此無需增益級。處理器無需監(jiān)控熱敏電阻兩端的電壓,無需確定該信號電平能否被電子設(shè)備測量,也無需計算要將增益/激勵電流調(diào)整到什么值。這是本文中使用的方法。

熱敏電阻阻值范圍/激勵

如果熱敏電阻的標稱電阻和阻值范圍較小,那么電壓或電流激勵均可使用。在這種情況下,激勵電流和增益可以是固定值。電路將如圖3所示。這種方法很有用,因為流過傳感器和參考電阻的電流是可控的,這在低功耗應(yīng)用中很有價值。此外,熱敏電阻的自發(fā)熱也極小。

對標稱電阻較低的熱敏電阻也可以使用電壓激勵。但是,用戶必須確保通過傳感器的電流對于傳感器本身或應(yīng)用而言任何時候都不能太大。當使用標稱電阻和溫度范圍均較大的熱敏電阻時,電壓激勵會使系統(tǒng)更容易實現(xiàn)。較大標稱電阻確保標稱電流處于合理水平。但是,設(shè)計人員需要確保電流在應(yīng)用支持的整個溫度范圍內(nèi)處于可接受的水平。

Σ-Δ ADC在基于熱敏電阻的應(yīng)用中的重要作用

當設(shè)計熱敏電阻測量系統(tǒng)時,Σ-Δ ADC能提供多方面優(yōu)勢。首先,Σ-Δ型ADC能夠?qū)?a href="http://www.brongaenegriffin.com/analog/" target="_blank">模擬輸入過采樣,從而盡可能地減少外部濾波,只需要簡單的RC濾波器。另外,它們支持靈活地選擇濾波器類型和輸出數(shù)據(jù)速率。在采用市電供電的設(shè)計中,內(nèi)置數(shù)字濾波可用來抑制交流電源的干擾。AD7124-4/AD7124-8等24位器件的峰峰值分辨率21.7位(最大值),因此它們能提供高分辨率。

其他優(yōu)點包括:

寬共模范圍的模擬輸入

寬共模范圍的基準輸入

能夠支持比率式配置

有些Σ-Δ型ADC集成了很多功能,包括:

PGA

內(nèi)部基準電壓源

基準電壓源/模擬輸入緩沖器

校準功能

使用Σ-Δ ADC可大幅簡化熱敏電阻設(shè)計,減少BOM,降低系統(tǒng)成本,縮小電路板空間,并縮短產(chǎn)品上市時間。

本文將AD7124-4/AD7124-8用作ADC,它們是集成PGA、嵌入式基準電壓源、模擬輸入和基準電壓緩沖器的低噪聲、低電流精密ADC。

熱敏電阻電路配置——比率式配置

無論使用激勵電流還是激勵電壓,都建議使用比率式配置,其中基準電壓和傳感器電壓是從同一激勵源獲得。這意味著激勵源的任何變化都不會影響測量的精度。

1669191287685940.jpg

圖5.恒流源配置

圖5顯示,恒定激勵電流為熱敏電阻和精密電阻RREF供電,RREF上產(chǎn)生的電壓就是熱敏電阻測量的基準電壓。激勵電流不需要非常準確,穩(wěn)定性不需要太高,因為在此配置中,激勵電流的任何誤差都會被抵消。激勵電流通常比電壓激勵更受歡迎,原因是它能出色地控制靈敏度,而且當傳感器位于遠程地點時,它具有更好的抗擾度。這種類型的偏置技術(shù)常用于電阻值較低的RTD或熱敏電阻。但是,對于電阻值較大且靈敏度較高的熱敏電阻,溫度變化所產(chǎn)生的信號電平會較大,因此應(yīng)使用電壓激勵。例如,一個10kΩ熱敏電阻在25°C時的阻值為10kΩ,而在?50°C時,NTC熱敏電阻的阻值為441.117kΩ。AD7124-4/AD7124-8提供的50μA最小激勵電流可產(chǎn)生的電壓為441.117kΩ × 50μA = 22V,此電壓過高,超出了該應(yīng)用領(lǐng)域中使用的大多數(shù)ADC的工作范圍。熱敏電阻通常還連接到電子設(shè)備或位于電子設(shè)備附近,因此不需要激勵電流的抗噪優(yōu)勢。

1669191282157290.jpg

圖6.分壓電路配置

圖6顯示了用于在NTC熱敏電阻兩端產(chǎn)生電壓的恒定激勵電壓。以分壓器電路的形式添加一個串聯(lián)檢測電阻,會限制熱敏電阻在最小電阻值時流經(jīng)其中的電流。在此配置中,在25°C的基本溫度時,檢測電阻RSENSE的值必須等于熱敏電阻的電阻值,以便將它處于25°C標稱溫度時的輸出電壓設(shè)置為基準電壓的中間值。同樣,如果使用25°C時阻值為10kΩ的10kΩ熱敏電阻,則RSENSE必須等于10kΩ。當溫度改變時,NTC熱敏電阻的阻值也會改變,熱敏電阻兩端的激勵電壓的一小部分也發(fā)生改變,從而產(chǎn)生與成NTC熱敏電阻阻值比例的輸出電壓。

1669191277614695.jpg

圖7.熱敏電阻比率式配置測量

如果選擇用來為熱敏電阻和/或RSENSE供電的基準電壓與用于測量的ADC基準電壓相同,則系統(tǒng)就是比率式測量配置(圖7),任何與激勵電壓源相關(guān)的誤差都會被消除。

請注意,檢測電阻(電壓激勵)或參考電阻(電流激勵)的初始容差和漂移必須很低,因為這兩個變量均會影響系統(tǒng)總體精度。

當使用多個熱敏電阻時,可以使用單個激勵電壓。但是,每個熱敏電阻必須有自己的精密檢測電阻,如圖8所示。另一個方案是使用低導通電阻的外部多路復用器或開關(guān),從而支持共享單個精密檢測電阻。采用這種配置時,每個熱敏電阻在測量時都需要一定的建立時間。

1669191270228875.jpg

圖8.多個熱敏電阻的模擬輸入配置測量

總之,設(shè)計基于熱敏電阻的溫度系統(tǒng)時需要關(guān)注多個方面:傳感器選擇,傳感器連接,元器件選擇的權(quán)衡,ADC配置,以及這些不同變量如何影響系統(tǒng)整體精度。本系列的下一篇文章將解釋如何優(yōu)化系統(tǒng)設(shè)計和整體系統(tǒng)誤差預算以實現(xiàn)目標性能。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 熱敏電阻
    +關(guān)注

    關(guān)注

    15

    文章

    1251

    瀏覽量

    104194
  • adc
    adc
    +關(guān)注

    關(guān)注

    100

    文章

    7481

    瀏覽量

    554411
  • RTD
    RTD
    +關(guān)注

    關(guān)注

    1

    文章

    162

    瀏覽量

    29176
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    基于RTD電阻和溫度之間關(guān)系及應(yīng)用

    許多醫(yī)療、過程控制和工業(yè)自動化應(yīng)用都需要精確溫度測量來實現(xiàn)其功能。電阻式溫度檢測器(RTD)在這些精確溫度測量中通常用作傳感元件,因為它們具
    的頭像 發(fā)表于 05-23 09:38 ?1.3w次閱讀
    基于<b class='flag-5'>RTD</b>電阻和<b class='flag-5'>溫度</b>之間關(guān)系及應(yīng)用

    什么是電阻溫度檢測器(RTD)

    什么是電阻溫度檢測器(RTD) 電阻溫度檢測器(RTD)是一種阻值隨
    發(fā)表于 10-19 16:31

    RTD溫度測量系統(tǒng)對ADC的要求

    的影響極小。AD7124-4/AD7124-8允許用戶選擇激勵電流值,從而調(diào)整系統(tǒng)以使用ADC的大部分輸入范圍,提高性能。圖1. 3線RTD溫度測量
    發(fā)表于 10-18 11:06

    RTD溫度測量系統(tǒng)對ADC有什么要求

    激勵電流和基準電壓緩沖器等。本文介紹常用的3線和4線電阻溫度檢測器(RTD),以及傳感器與ADC接口所需的電路,并說明對ADC的性能要求。
    發(fā)表于 07-23 08:28

    TMPSNSRD-RTD2,電阻溫度檢測器參考設(shè)計

    TMPSNSRD-RTD2,電阻溫度檢測器(RTD)參考設(shè)計。 RTD參考設(shè)計演示了如何使用電阻式溫度
    發(fā)表于 06-11 14:55

    如何偏置電阻式溫度檢測精確測量溫度

    TMPSNS-RTD1,PT100 RTD評估板演示了如何偏置電阻式溫度檢測精確測量溫度。最
    發(fā)表于 07-23 08:34

    用于2線、4到20 mA電流環(huán)路系統(tǒng)RTD溫度發(fā)送器參考設(shè)計

    描述此全面設(shè)計提供完整的系統(tǒng),可測量和處理來自 2 線、3 線和 4 線電阻式溫度檢測器 (RTD) 的溫度信號輸入,
    發(fā)表于 09-22 07:04

    三線電阻式溫度檢測器(RTD)中勵磁電流失配對誤差的影響

    許多醫(yī)療、過程控制和工業(yè)自動化應(yīng)用都需要精確溫度測量來實現(xiàn)其功能。電阻式溫度檢測器(RTD)在這些精確溫度測量中通常用作傳感元件,因為它們具
    發(fā)表于 04-26 15:38 ?6771次閱讀
    三線電阻式<b class='flag-5'>溫度</b><b class='flag-5'>檢測</b>器(<b class='flag-5'>RTD</b>)中勵磁電流失配對誤差的影響

    電阻式溫度檢測器(RTD)基礎(chǔ)知識及參考設(shè)計

    本文主要介紹了電阻式溫度檢測器(RTD)基礎(chǔ)知識及參考設(shè)計。
    發(fā)表于 06-05 17:28 ?27次下載

    如何選擇設(shè)計最佳RTD溫度檢測系統(tǒng)

    本文討論基于電阻溫度檢測器(RTD)的溫度測量系統(tǒng)的歷史和設(shè)計挑戰(zhàn)。本文還涉及RTD選型和配置上
    發(fā)表于 08-01 10:37 ?1520次閱讀
    如何<b class='flag-5'>選擇</b><b class='flag-5'>并</b>設(shè)計最佳<b class='flag-5'>RTD</b><b class='flag-5'>溫度</b><b class='flag-5'>檢測</b><b class='flag-5'>系統(tǒng)</b>

    基于熱敏電阻的溫度檢測系統(tǒng)設(shè)計挑戰(zhàn)和電路配置

    如文章“如何選擇和設(shè)計最佳RTD溫度檢測系統(tǒng)”中所述,RTD是一種電阻器,其電阻隨
    的頭像 發(fā)表于 12-13 11:52 ?2285次閱讀

    如何選擇和設(shè)計最佳的RTD溫度傳感系統(tǒng)

    有兩種方法可以配置3線RTD電路。方法1將基準電阻放在頂部,使第一個激勵電流IOUT0流向R裁判,RL1 然后進入 RTD,第二個電流流過 RL2 引線電阻產(chǎn)生一個電壓,該電壓抵消了 RL1 引線
    的頭像 發(fā)表于 12-15 15:41 ?2079次閱讀
    如何<b class='flag-5'>選擇</b>和設(shè)計最佳的<b class='flag-5'>RTD</b><b class='flag-5'>溫度</b>傳感<b class='flag-5'>系統(tǒng)</b>

    RTD測量系統(tǒng)設(shè)計要點

    高精度溫度測量為工業(yè)自動化應(yīng)用提供基本數(shù)據(jù),以確保產(chǎn)品質(zhì)量和安全。有許多類型的溫度傳感器可供選擇,每種傳感器都有其優(yōu)點和缺點。本應(yīng)用筆記重點介紹電阻溫度
    發(fā)表于 02-28 16:48 ?1811次閱讀
    <b class='flag-5'>RTD</b>測量<b class='flag-5'>系統(tǒng)</b>設(shè)計要點

    如何選擇設(shè)計最佳RTD溫度檢測系統(tǒng)

    本文討論基于電阻溫度檢測器(RTD)的溫度測量系統(tǒng)的歷史和設(shè)計挑戰(zhàn)。本文還涉及RTD選型和配置上
    的頭像 發(fā)表于 06-14 14:14 ?1550次閱讀
    如何<b class='flag-5'>選擇</b><b class='flag-5'>并</b>設(shè)計最佳<b class='flag-5'>RTD</b><b class='flag-5'>溫度</b><b class='flag-5'>檢測</b><b class='flag-5'>系統(tǒng)</b>

    串聯(lián)電阻式溫度檢測器(RTD)感應(yīng)參考設(shè)計

    電子發(fā)燒友網(wǎng)站提供《串聯(lián)電阻式溫度檢測器(RTD)感應(yīng)參考設(shè)計.pdf》資料免費下載
    發(fā)表于 11-07 09:26 ?2次下載
    串聯(lián)電阻式<b class='flag-5'>溫度</b><b class='flag-5'>檢測</b>器(<b class='flag-5'>RTD</b>)感應(yīng)參考設(shè)計