01引言
甲醇(CH3OH)是一種重要的化學(xué)原料和儲氫載體,將二氧化碳(CO2)氫化為甲醇(CH3OH)被認(rèn)為是緩解溫室效應(yīng)的一種經(jīng)濟(jì)可行的策略。然而,CO2分子的熱力學(xué)穩(wěn)定性和動力學(xué)惰性使其轉(zhuǎn)化具有挑戰(zhàn)性,而且高溫下逆水煤氣變換反應(yīng)(RWGS)會產(chǎn)生副產(chǎn)物CO,從而降低甲醇產(chǎn)率。銠(Rh)催化劑因其在低溫下的高穩(wěn)定性和催化活性而在CO2加氫領(lǐng)域備受關(guān)注,然而,盡管有一些關(guān)于負(fù)載型Rh催化劑用于CO2加氫制甲醇的報道,但它們對甲醇的選擇性仍然不夠理想[Applied Catalysis A, 175, 1998, 67?81; Catalysis Communications, 11, 2010, 901?906]。最近一些研究表明,氧化銦(In2O3)能在高溫下保持高甲醇選擇性和產(chǎn)率[Journal of Materials Chemistry, 364, 2018, 382?393; Catalysis Today, 259, 2016, 402?408],然而,In2O3低的CO2轉(zhuǎn)化率和弱的H2活化能力限制了甲醇的產(chǎn)率,需要采取各種策略來優(yōu)化和提高催化性能。有研究發(fā)現(xiàn)(111)面是In2O3的低指數(shù)晶面中熱力學(xué)最穩(wěn)定的晶面[Journal of Materials Chemistry, 20, 2010, 10438]。
此外,In2O3負(fù)載的Rh納米顆粒對甲醇表現(xiàn)出高選擇性,而且在反應(yīng)溫度低于500K時,選擇性可以達(dá)到100% [Catalysis Today, 365, 2021, 341?347]。受此啟發(fā),本課題研究了Rh4團(tuán)簇負(fù)載的In2O3(111)表面CO2加氫制甲醇的反應(yīng)機(jī)理,并探討了催化劑的活性起源。
02成果簡介
本課題研究過程中,使用了鴻之微第一性原理平面波計算軟件DS-PAW,并用第一性原理計算了Rh4團(tuán)簇負(fù)載的In2O3(111)表面CO2加氫制甲醇的轉(zhuǎn)換頻率。Rh4團(tuán)簇和H2促進(jìn)了氧空位的形成,促進(jìn)了Rh4團(tuán)簇與In2O3(111)載體之間的相互作用,提高了催化劑的穩(wěn)定性。利用靜電勢和Fukui(?)指數(shù)預(yù)測了CO2和H2在催化劑上的吸附行為。
與In2O3(111)_D表面相比,Rh4簇的負(fù)載促進(jìn)了CO2的吸附,并使得H2更容易解離。然后,建立了三種加氫途徑的吉布斯自由能圖,并基于能量跨度模型計算了所有可能途徑的轉(zhuǎn)換頻率。結(jié)果表明,HCOO路徑被認(rèn)為是最優(yōu)的加氫機(jī)理,因為其最大的轉(zhuǎn)換頻率(3.02 × 10?5s?1)高于In2O3(111)_D和其他報道的催化劑。具體過程為CO2(g) +6H → HCOO* + 5H → HCOOH* + 4H → H2COOH* + 3H → H2CO* + 2H + H2O(g) → H2COH* + H + H2O(g) → CH3OH(g) +H2O(g),同時有效抑制了RWGS途徑和副產(chǎn)物的產(chǎn)生,從而提高了甲醇的選擇性。此外,催化活性的提高可能是由于負(fù)載的Rh4簇促進(jìn)了CO2的吸附和H2的解離。
03圖文導(dǎo)讀

圖1(a)優(yōu)化的In2O3(111)_P和Rh4/In2O3(111)_P表面構(gòu)型(紅色:O原子;棕色:In原子;綠色:Rh原子)

圖2在Rh4/In2O3(111)_P和In2O3(111)_P表面通過熱解吸和H2還原產(chǎn)生氧空位的反應(yīng)能的熱圖


圖3(a)優(yōu)化的Rh4/In2O3(111)_Dv1表面構(gòu)型;(b)Fukui(?)指數(shù);(c)塊體Rh和負(fù)載的Rh4團(tuán)簇的態(tài)密度圖及相應(yīng)的d帶中心
表1 Rh團(tuán)簇與Rh4/In2O3_Dv1的Bader電荷

表2分離的CO2和吸附的CO2的幾何參數(shù)和Bader電荷



圖4(a)吸附在團(tuán)簇上的CO2*的最優(yōu)結(jié)構(gòu)(灰色:C原子;白色:H原子);(b)CO2*解離CO和O*;(c)在團(tuán)簇上解離的H2;(d)CO2*的差分電荷密度(黃色代表電荷累積,綠色代表電荷耗損)

圖5通過HCOO路徑在Rh4/In2O3(111)_Dv1表面CO2氫化成甲醇及副產(chǎn)物的吉布斯自由能圖。TS表示每個基元反應(yīng)的相應(yīng)過渡態(tài)
表3 500 K溫度下Rh4/In2O3(111)_Dv1表面通過HCOO路徑合成甲醇的TOF

表4 500 K溫度下Rh4/In2O3(111)_Dv1表面HCOO路徑中生成副產(chǎn)物HCOOH和H2CO的TOF


圖6通過CO-hydro路徑在Rh4/In2O3(111)_Dv1表面CO2氫化成甲醇及副產(chǎn)物的吉布斯自由能圖
表5500 K溫度下Rh4/In2O3(111)_Dv1表面通過CO-hydro路徑合成甲醇的TOF

表6 500 K溫度下Rh4/In2O3(111)_Dv1表面CO-hydro路徑中生成副產(chǎn)物CO和H2CO的TOF


圖7通過RWGS路徑在Rh4/In2O3(111)_Dv1表面CO2氫化成甲醇及副產(chǎn)物的吉布斯自由能圖
表7 500 K溫度下Rh4/In2O3(111)_Dv1表面通過RWGS路徑合成甲醇的TOF

表8 500 K溫度下Rh4/In2O3(111)_Dv1表面RWGS路徑中生成副產(chǎn)物CO和H2CO的TOF

04小結(jié)
本文研究了在RIn2O3(111)_Dv1表面上CO2加氫制甲醇的反應(yīng)機(jī)理和催化活性。研究發(fā)現(xiàn),Rh4簇合物的負(fù)載顯著降低了氧空位形成的反應(yīng)能,H2還原對氧空位形成比熱解吸更有效。氧空位的存在促進(jìn)了Rh團(tuán)簇和載體之間的相互作用。電子結(jié)構(gòu)分析表明,負(fù)載的Rh團(tuán)簇具有較強(qiáng)的H2活化能力。此外,與RIn2O3(111)_D催化劑相比,負(fù)載的Rh4簇促進(jìn)了CO2的吸附并促進(jìn)了H2的離解,從而提高了催化活性。最后,探討了RIn2O3(111)_Dv1上甲醇形成的機(jī)理和活性。根據(jù)能量跨度模型的結(jié)果,在RIn2O3(111)_Dv1上合成甲醇的TOF大約是在RIn2O3(111)_D上合成甲醇TOF的10倍。HCOO途徑被認(rèn)為是RIn2O3(111)_Dv1上的最優(yōu)加氫途徑。HCOOH*和H2COH*是重要的反應(yīng)中間體,而在RIn2O3(111)_D表面,H2COO*和CH3O*是決定最終加氫反應(yīng)路線的關(guān)鍵中間體。最后探討了金屬與載體之間的相互作用在提高催化活性中所扮演的重要角色,研究表明催化活性的增強(qiáng)可歸因于CO2吸附的改善和H2溢出效應(yīng)。
審核編輯:劉清
-
TOF
+關(guān)注
關(guān)注
9文章
542瀏覽量
38325
原文標(biāo)題:DS-PAW文獻(xiàn)賞析 | 氧化銦負(fù)載銠團(tuán)簇作為二氧化碳加氫生成甲醇的高性能催化劑(陳鑫)
文章出處:【微信號:hzwtech,微信公眾號:鴻之微】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
航空動力電動化浪潮下的隱形冠軍:電動甲醇泵的產(chǎn)業(yè)鏈定位、技術(shù)壁壘與國產(chǎn)化替代路徑
探索XENSIV? PAS CO2 1.5傳感器:高精度二氧化碳檢測的新選擇
艾邁斯歐司朗與合作伙伴聯(lián)合推出可大幅降低二氧化碳排放的紙質(zhì)卷盤LED運(yùn)輸解決方案
雙光路紅外二氧化碳氣體傳感器:精準(zhǔn)監(jiān)測背后的技術(shù)革新
創(chuàng)新驅(qū)動與產(chǎn)業(yè)變革:超臨界二氧化碳發(fā)電技術(shù)的差異化發(fā)展路徑與前景展望
超臨界二氧化碳(sCO?)動力循環(huán)技術(shù)原理及其在航空發(fā)動機(jī)領(lǐng)域的應(yīng)用價值
精準(zhǔn)捕捉環(huán)境信號:二氧化碳 / 溫濕度 / 光照度四合一傳感器解析
尺寸雖小,內(nèi)有乾坤: Sensirion突破性微型二氧化碳傳感器發(fā)售
二氧化碳溫濕度光照度傳感器:四合一,在線監(jiān)測氣體
樹莓派的可持續(xù)解決方案:年二氧化碳排放量減少了43噸!
呼氣末二氧化碳監(jiān)測中的傳感器應(yīng)用
二氧化碳光聲傳感技術(shù)
芯片制造中的二氧化硅介紹
礦井下的“隱形守護(hù)者”:解碼礦用二氧化碳傳感器
汽車排氣管內(nèi)置的傳感器種類解析
氧化銦負(fù)載銠團(tuán)簇作為二氧化碳加氫生成甲醇的高性能催化劑
評論