chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

應(yīng)對傳統(tǒng)摩爾定律微縮挑戰(zhàn)需要芯片布線和集成的新方法

jf_pJlTbmA9 ? 來源: Kevin Moraes ? 作者: Kevin Moraes ? 2023-12-05 15:32 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作者:應(yīng)用材料公司 Kevin Moraes

從計算機行業(yè)的早期開始,芯片設(shè)計人員就對晶體管數(shù)量的需求永無止境。英特爾于1971年推出了具有2,300個晶體管的4004微處理器,激發(fā)了微處理器革命;到了今天,主流CPU已有數(shù)百億的晶體管。

在過去多年的發(fā)展中,技術(shù)的變革在于——如何將更高的晶體管預(yù)算轉(zhuǎn)化為更好的芯片和系統(tǒng)。在 2000 年代初期的丹納德微縮時代,縮小的晶體管推動了芯片功率(Power)、性能(Performance)和面積成本(Area-cost)即PPAC的同步改進。設(shè)計人員可以提高單核CPU的運行速度,以加速現(xiàn)有軟件應(yīng)用程序的性能,同時保持合理的功耗和熱量。當無法在不產(chǎn)生過多熱量的情況下將單核芯片推向更高速度時,丹納德微縮就結(jié)束了。而導(dǎo)致的結(jié)果就是——功率(下圖中的橙色線)和頻率(下圖中的綠色線)改進也都停止了。

新的架構(gòu)

wKgZomVdjiuAdC2cAAFqVwnhCsQ980.png

如上圖所示,設(shè)計人員使用越來越多的晶體管來添加CPU內(nèi)核(上圖中黑色線)以及并行化的軟件應(yīng)用程序,以使計算工作負載能夠跨越更多的內(nèi)核劃分。最終,并行性達到了阿姆達爾微縮的極限(上圖藍色線),業(yè)界使用越來越多的晶體管來整合GPU和TPU。這些GPU和TPU繼續(xù)隨著核心數(shù)量的增加而擴展,從而加速了3D圖形和機器學(xué)習(xí)算法等工作負載。今天,我們正處于一個以新架構(gòu)為特征的時代——運算性能取決于內(nèi)核和加速器,并由增加的晶體管預(yù)算和更大的芯片尺寸來驅(qū)動。但是,正如我將在本博客后面解釋的那樣,新的限制正在步步逼近。

EUV來了,現(xiàn)在怎么辦?

EUV光刻技術(shù)已經(jīng)到來,這使得在芯片上打印更小的晶體管特征和布線成為可能。但這些從業(yè)者也面臨新的挑戰(zhàn)。在國際電子器件會議(IEDM 2019)期間名為“邏輯的未來:EUV來了,現(xiàn)在怎么辦?”的圓桌論壇上,行業(yè)專家提出這種技術(shù)簡化了圖形化,但這并不是靈丹妙藥。我列出了參會人員所討論到的幾個挑戰(zhàn),他們提出來的解決方案如今正在半導(dǎo)體行業(yè)的新路線圖中逐步實現(xiàn)。

首先,論壇提出了一個對某些人來說違反直覺的挑戰(zhàn):在芯片制造中,越小不一定越好,因為在同一空間中封裝的晶體管觸點和互連線越多,芯片的速度就越慢,能效就越低。

其次,該論壇上預(yù)測了背面配電網(wǎng)絡(luò)的到來——這是一種設(shè)計技術(shù)協(xié)同優(yōu)化(DTCO)技術(shù),目前已出現(xiàn)在領(lǐng)先芯片制造商的路線圖中。它允許邏輯密度增加高達30%,而無需對光刻進行任何更改。

我們現(xiàn)在正處于摩爾定律的第四次演變中,芯片制造商可以通過設(shè)計在各種節(jié)點上制造的芯片“然后使用先進的封裝將它們縫合在一起”來降低成本。事實上,早在57年前,摩爾博士就已經(jīng)預(yù)言了正在興起的異構(gòu)設(shè)計和集成時代。

應(yīng)用材料公司已在5月26日的“芯片布線和集成的新方法”大師課上,進一步探討了上述三個話題,同時我們也展示了材料工程和異構(gòu)集成方面的創(chuàng)新,從而解決EUV微縮出現(xiàn)的電阻問題;在不改變光刻技術(shù)的情況下,實現(xiàn)微縮邏輯芯片的新方法;以及為設(shè)計人員提供幾乎無限的晶體管預(yù)算。以下是本次大師課的內(nèi)容概述。

提高功率和性能所需的布線創(chuàng)新

EUV的出現(xiàn)使制造商能夠通過單次曝光打印25納米間距內(nèi)的特征,從而簡化了圖形化。不幸的是,使芯片布線更小并不能使它變得更好。EUV微縮的電阻難題存在于最小的晶體管觸點、通孔和互連中,這就是材料工程需要創(chuàng)新的地方。

wKgaomVdjiyACJDfAATWYUEzIJo750.png

芯片中最小的導(dǎo)線是為晶體管的柵極、源極和漏極供電的觸點。觸點將晶體管連接到周圍的互連線,該互連線由金屬線和通孔組成,允許將電源信號路由到晶體管并貫穿整個芯片。

為了創(chuàng)建布線,我們在介電材料中刻蝕出溝槽,然后使用金屬疊層沉積布線,該金屬疊層通常包括一個阻擋層,可防止金屬與介電材料混合;提升粘附的襯墊層;促進金屬填充的種子層;晶體管觸點使用鎢或鈷等金屬,互連線使用銅。

wKgZomVdji2AXbAuAAGnZvXVsUc759.png

但遺憾的是,阻擋層和襯墊層不能很好地縮小,并且隨著我們使用EUV縮小溝槽圖案,阻擋層和襯墊占用的空間比例增加,而可用于布線的空間減少了。布線越小,電阻越高。

而應(yīng)用材料公司一直致力于開發(fā)新的技術(shù),重塑芯片布線的設(shè)計和制造方式。

使用背面配電網(wǎng)絡(luò)促進邏輯電路微縮

晶體管由電線網(wǎng)絡(luò)供電,電線網(wǎng)絡(luò)將電壓從片外穩(wěn)壓器通過芯片的所有金屬層傳輸?shù)矫總€邏輯單元。在芯片的12個或更多金屬層中的每一層,布線電阻都會降低電源電壓。

wKgZomVdji-AISnzAAI2IlqZuN8295.png

供電網(wǎng)絡(luò)的設(shè)計裕度可以承受穩(wěn)壓器和晶體管之間10%的壓降。使用EUV進一步微縮線路和通孔會導(dǎo)致更高的電阻和布線擁塞。因此,如果不承受高達50%的電壓降低,我們可能無法使用現(xiàn)有的電力傳輸技術(shù)微縮到3納米以下,從而產(chǎn)生嚴重的晶體管穩(wěn)定性問題。

在每個邏輯單元內(nèi),電源線(也稱為“軌道”)需要具有一定的尺寸,以便為晶體管提供足夠的電壓以進行切換。它們不能像晶體管結(jié)構(gòu)和信號線等其它邏輯單元組件那樣微縮。因此,電源軌現(xiàn)在比其它元件寬約三倍,對邏輯密度微縮構(gòu)成了主要障礙。

wKgaomVdjjCAX8UQAAIaz4YpeCM456.png

其解決方案是一個簡單而美妙的想法:為什么不將所有電源線移到背面呢?從而解決電壓降低問題和邏輯單元微縮難題并顯著地增加價值?

這正是應(yīng)用材料公司基于晶圓正面布線領(lǐng)先技術(shù)上的創(chuàng)新?!氨趁媾潆娋W(wǎng)絡(luò)”將繞過芯片的12個或更多布線層,以將電壓降低多達7倍。從邏輯單元中移除電源軌可以使邏輯密度在相同的光刻間距下最多微縮30%——相當于在相同的光刻間距下兩代EUV的微縮。

wKgaomVdjjGAWiHuAAJUsPWXasw730.png

根據(jù)公開信息,芯片制造商正在評估三種不同的背面配電架構(gòu),每種架構(gòu)都有設(shè)計權(quán)衡。一些方法將更容易制造,而其它更復(fù)雜的方法可以最大限度地擴大面積。

異構(gòu)集成在芯片和系統(tǒng)級別推動PPACt

隨著晶體管數(shù)量繼續(xù)呈指數(shù)增長,而二維微縮速度放緩,芯片尺寸正在增加,并推高了“光罩限制”。當摩爾定律微縮平穩(wěn)時,設(shè)計人員可以在該空間中放置大量高性能PC和服務(wù)器芯片,或少量極高性能服務(wù)器芯片。今天,服務(wù)器、GPU甚至PC芯片的設(shè)計者想要的晶體管數(shù)量超過了標線片區(qū)域所能容納的數(shù)量。這迫使并加速了行業(yè)向使用先進封裝技術(shù)的異構(gòu)設(shè)計和集成的過渡。

wKgZomVdjjOAE6FeAAF8PvhLKqs061.png

從概念上講,如果兩個芯片可以使用它們的后端互連線連接,那么異構(gòu)芯片可以作為一個芯片執(zhí)行,從而克服標線限制。事實上,這個概念是存在的:被稱為混合鍵合,它正在領(lǐng)先的芯片制造商的路線圖中出現(xiàn)。一個有前景的例子是將大型SRAM高速緩存芯片與CPU芯片結(jié)合,以同時克服標線限制、加快開發(fā)時間、提升性能、減小芯片尺寸、提高良率和降低成本。SRAM緩存可以使用舊的、折舊的制造節(jié)點來構(gòu)建,以進一步降低成本。此外,使用先進的基板和封裝技術(shù),例如硅通孔,設(shè)計人員可以引入其它無法很好擴展的技術(shù),例如DRAM和閃存、模擬、電源和光學(xué)芯片,更接近于邏輯和內(nèi)存緩存,進而改善系統(tǒng)設(shè)計靈活性、成本和上市時間,并提高系統(tǒng)性能、功率、尺寸和成本。

為了加速行業(yè)從系統(tǒng)單芯片時代向系統(tǒng)級封裝時代過渡,應(yīng)用材料公司正致力于開發(fā)混合鍵合的解決方案。

wKgaomVdjjSAE-PFAAOIlSyHWdk466.png

此外,我們在美國時間5月26日舉辦的“芯片布線和集成的新方法”大師課上,還探討了一個相關(guān)的領(lǐng)域——需要更大的半導(dǎo)體級先進基板用于異質(zhì)集成,以此使得設(shè)計人員能夠利用更大的封裝集成更多的芯片并且成本更具競爭力。

wKgZomVdjjaAHyRkAALT6bx87Lc528.png

作者簡介:
wKgaomVdjjeAJ7K8AABxKyDuuco745.jpg
Kevin Moraes是應(yīng)用材料公司半導(dǎo)體事業(yè)部產(chǎn)品和營銷副總裁。他負責領(lǐng)導(dǎo)團隊制定產(chǎn)品戰(zhàn)略、投資重點、管理產(chǎn)品線等。Moraes博士擁有倫斯勒理工學(xué)院材料科學(xué)與工程博士學(xué)位、加州大學(xué)伯克利分校哈斯商學(xué)院MBA學(xué)位。

關(guān)于應(yīng)用材料公司

應(yīng)用材料公司(納斯達克:AMAT)是材料工程解決方案的領(lǐng)導(dǎo)者,全球幾乎每一個新生產(chǎn)的芯片和先進顯示器的背后都有應(yīng)用材料公司的身影。憑借在規(guī)模生產(chǎn)的條件下可以在原子級層面改變材料的技術(shù),我們助力客戶實現(xiàn)可能。應(yīng)用材料公司堅信,我們的創(chuàng)新實現(xiàn)更美好的未來。欲知詳情,請訪問www.appliedmaterials.com 。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 集成
    +關(guān)注

    關(guān)注

    1

    文章

    177

    瀏覽量

    30775
  • 摩爾定律
    +關(guān)注

    關(guān)注

    4

    文章

    640

    瀏覽量

    80399
  • 晶體管
    +關(guān)注

    關(guān)注

    77

    文章

    10094

    瀏覽量

    144759
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    【「AI芯片:科技探索與AGI愿景」閱讀體驗】+內(nèi)容總覽

    ,其中第一章是概論,主要介紹大模型浪潮下AI芯片的需求與挑戰(zhàn)。第二章和第三章分別介紹實現(xiàn)深度學(xué)習(xí)AI芯片的創(chuàng)新方法和架構(gòu)。以及一些新型的算法和思路。第四章是全面介紹半導(dǎo)體芯產(chǎn)業(yè)的前沿技
    發(fā)表于 09-05 15:10

    借助AMD無頂蓋封裝技術(shù)應(yīng)對散熱挑戰(zhàn)

    隨著電子行業(yè)向更小節(jié)點邁進,現(xiàn)代應(yīng)用要求更高的時鐘速率和性能。2014 年,斯坦福大學(xué)教授 Mark Horowitz 發(fā)表了一篇開創(chuàng)性的論文,描述半導(dǎo)體行業(yè)面臨相關(guān)登納德縮放及摩爾定律失效的挑戰(zhàn)
    的頭像 發(fā)表于 08-21 09:07 ?486次閱讀

    Chiplet與3D封裝技術(shù):后摩爾時代的芯片革命與屹立芯創(chuàng)的良率保障

    摩爾定律逐漸放緩的背景下,Chiplet(小芯片)技術(shù)和3D封裝成為半導(dǎo)體行業(yè)突破性能與集成度瓶頸的關(guān)鍵路徑。然而,隨著芯片集成度的提高,
    的頭像 發(fā)表于 07-29 14:49 ?479次閱讀
    Chiplet與3D封裝技術(shù):后<b class='flag-5'>摩爾</b>時代的<b class='flag-5'>芯片</b>革命與屹立芯創(chuàng)的良率保障

    芯片制造中高精度膜厚測量與校準:基于紅外干涉技術(shù)的新方法

    、環(huán)境光干擾及薄膜傾斜等因素限制,測量精度難以滿足高精度工業(yè)需求。為此,本研究提出一種融合紅外干涉與激光校準的薄膜厚度測量新方法,旨在突破傳統(tǒng)技術(shù)瓶頸,實現(xiàn)更精準、
    的頭像 發(fā)表于 07-21 18:17 ?2040次閱讀
    <b class='flag-5'>芯片</b>制造中高精度膜厚測量與校準:基于紅外干涉技術(shù)的<b class='flag-5'>新方法</b>

    無刷直流電機反電勢過零檢測新方法

    新方法。在三相采樣等效電路上分別并聯(lián)一組三極管控制的電阻分壓開關(guān)電路,參考電機轉(zhuǎn)速線性調(diào)節(jié)控制信號占空比,以此控制三極管通斷,從而調(diào)節(jié)電阻分樂開關(guān)電路阻值,可以避免高速時反電勢幅值高于檢測電路供電電壓
    發(fā)表于 06-26 13:50

    跨越摩爾定律,新思科技掩膜方案憑何改寫3nm以下芯片游戲規(guī)則

    。 然而,隨著摩爾定律逼近物理極限,傳統(tǒng)掩模設(shè)計方法面臨巨大挑戰(zhàn),以2nm制程為例,掩膜版上的每個圖形特征尺寸僅為頭發(fā)絲直徑的五萬分之一,任何微小誤差都可能導(dǎo)致
    的頭像 發(fā)表于 05-16 09:36 ?5234次閱讀
    跨越<b class='flag-5'>摩爾定律</b>,新思科技掩膜方案憑何改寫3nm以下<b class='flag-5'>芯片</b>游戲規(guī)則

    電力電子中的“摩爾定律”(1)

    本文是第二屆電力電子科普征文大賽的獲獎作品,來自上??萍即髮W(xué)劉賾源的投稿。著名的摩爾定律中指出,集成電路每過一定時間就會性能翻倍,成本減半。那么電力電子當中是否也存在著摩爾定律呢?1965年,英特爾
    的頭像 發(fā)表于 05-10 08:32 ?490次閱讀
    電力電子中的“<b class='flag-5'>摩爾定律</b>”(1)

    先進封裝工藝面臨的挑戰(zhàn)

    在先進制程遭遇微縮瓶頸的背景下,先進封裝朝著 3D 異質(zhì)整合方向發(fā)展,成為延續(xù)摩爾定律的關(guān)鍵路徑。3D 先進封裝技術(shù)作為未來的發(fā)展趨勢,使芯片串聯(lián)數(shù)量大幅增加。
    的頭像 發(fā)表于 04-09 15:29 ?727次閱讀

    瑞沃微先進封裝:突破摩爾定律枷鎖,助力半導(dǎo)體新飛躍

    在半導(dǎo)體行業(yè)的發(fā)展歷程中,技術(shù)創(chuàng)新始終是推動行業(yè)前進的核心動力。深圳瑞沃微半導(dǎo)體憑借其先進封裝技術(shù),用強大的實力和創(chuàng)新理念,立志將半導(dǎo)體行業(yè)邁向新的高度。 回溯半導(dǎo)體行業(yè)的發(fā)展軌跡,摩爾定律無疑是一個重要的里程碑
    的頭像 發(fā)表于 03-17 11:33 ?601次閱讀
    瑞沃微先進封裝:突破<b class='flag-5'>摩爾定律</b>枷鎖,助力半導(dǎo)體新飛躍

    混合鍵合中的銅連接:或成摩爾定律救星

    混合鍵合3D芯片技術(shù)將拯救摩爾定律。 為了繼續(xù)縮小電路尺寸,芯片制造商正在爭奪每一納米的空間。但在未來5年里,一項涉及幾百乃至幾千納米的更大尺度的技術(shù)可能同樣重要。 這項技術(shù)被稱為“混合鍵合”,可以
    的頭像 發(fā)表于 02-09 09:21 ?879次閱讀
    混合鍵合中的銅連接:或成<b class='flag-5'>摩爾定律</b>救星

    石墨烯互連技術(shù):延續(xù)摩爾定律的新希望

    半導(dǎo)體行業(yè)長期秉持的摩爾定律(該定律規(guī)定芯片上的晶體管密度大約每兩年應(yīng)翻一番)越來越難以維持。縮小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當銅互連按比例縮小時,其電阻率急劇上升,這會
    的頭像 發(fā)表于 01-09 11:34 ?776次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創(chuàng)始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數(shù)量大約每18-24個月增加一倍的趨勢。該定律不僅推動了計算機硬件的快速發(fā)展,也對多個領(lǐng)域產(chǎn)生了深遠影響。
    的頭像 發(fā)表于 01-07 18:31 ?2478次閱讀

    Cadence如何應(yīng)對AI芯片設(shè)計挑戰(zhàn)

    生成式 AI 引領(lǐng)智能革命成為產(chǎn)業(yè)升級的核心動力并點燃了“百模大戰(zhàn)”。多樣化的大模型應(yīng)用激增對高性能AI 芯片的需求,促使行業(yè)在摩爾定律放緩的背景下,加速推進 2.5D、3D 及 3.5D 異構(gòu)集成技術(shù)。與此同時,AI 的驅(qū)動作
    的頭像 發(fā)表于 12-14 15:27 ?1623次閱讀

    摩爾定律時代,提升集成芯片系統(tǒng)化能力的有效途徑有哪些?

    電子發(fā)燒友網(wǎng)報道(文/吳子鵬)當前,終端市場需求呈現(xiàn)多元化、智能化的發(fā)展趨勢,芯片制造則已經(jīng)進入后摩爾定律時代,這就導(dǎo)致先進的工藝制程雖仍然是芯片性能提升的重要手段,但效果已經(jīng)不如從前,先進封裝
    的頭像 發(fā)表于 12-03 00:13 ?3442次閱讀