chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

澎峰科技發(fā)布大模型推理引擎PerfXLLM

perfxlab ? 來源:未知 ? 2023-11-25 15:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

自從2020年6月OpenAI發(fā)布chatGPT之后,基于Transformer網(wǎng)絡(luò)結(jié)構(gòu)的語言大模型(LLM)引發(fā)了全世界的注意與追捧,成為了人工智能領(lǐng)域的里程碑事件。

但大模型推理所需要的巨額開銷也引發(fā)了相關(guān)研究者的關(guān)注。如何高效地進行推理,并盡可能地減少成本,從而促進大模型應(yīng)用的落地成為了目前的關(guān)鍵問題。

于是,澎峰科技研發(fā)了一款大模型推理引擎—PerfXLLM,并且已經(jīng)在高通驍龍8Gen2平臺實現(xiàn)了應(yīng)用。接下來將分為四個部分進行介紹,第一部分將介紹PerfXLLM的整體架構(gòu)設(shè)計,第二部分將展示手機端的性能表現(xiàn),第三部分將詳細地闡述手機端的推理優(yōu)化方案,最后在第四部分將介紹PerfXLLM的未來規(guī)劃。

一、PerfXLLM整體架構(gòu)
目前大模型推理過程主要放在服務(wù)器或者云上進行處理。用戶發(fā)出請求,服務(wù)器進行響應(yīng),通過GPU等高性能計算部件完成推理計算,并通過網(wǎng)絡(luò)將結(jié)果傳輸給用戶。而隨著移動端設(shè)備硬件能力的不斷進步,并且用戶原始數(shù)據(jù)可能存在敏感隱私信息導(dǎo)致對安全問題有所顧慮,大模型在移動端的應(yīng)用和落地也成為了實際需求之一。為了兼顧兩部分的需求,PerfXLLM設(shè)計上采用了云端一體的架構(gòu)理念。

wKgaomVhpNKAdcxlAAHerlLWLUA217.png

如上圖所示,當模型經(jīng)過解析量化之后被PerfXLLM的推理引擎加載至內(nèi)存中。不管是云側(cè)還是端側(cè)都是調(diào)用同樣的一套推理引擎代碼。有所區(qū)別的地方在于云側(cè)需要進行額外的Serving模塊,從而獲得更高的硬件利用率和QPS響應(yīng)。再聚焦到底層Kernel,PerfXLLM中開發(fā)了一套針對大模型推理的算子庫,可以支持GPU、CPU等多種硬件設(shè)備。

二、PerfXLLM應(yīng)用在手機端

目前,PerfXLLM針對高通驍龍8Gen2芯片進行了定制優(yōu)化,高通8Gen2芯片進行了定制優(yōu)化,對LlaMA模型采用了AWQ的int4量化方法,并為模型開發(fā)了PerfXChat APP。生成速度為6.7 token/s。模型內(nèi)存占用為3.7GB。而llama.cpp的生成速度僅為3.2 token/s。

具體而言,通過芯片上的Andreno GPU進行加速,使用了OpenCL編程模型。首先對LlaMA模型進行int4量化,所采用的方式是AWQ量化方法。而后針對LlaMA模型中最耗時的Kernel進行了優(yōu)化。手機端的輸入token和生成token較少時,模型主要瓶頸在于GEMM算子和GEMV算子,研發(fā)團隊對這兩個算子進行了手工調(diào)優(yōu)。模型使用效果如下。

wKgaomVhpNKAW5faAABzdlK4fO8672.png

三、手機端推理優(yōu)化方案介紹

由于手機端的硬件性能與服務(wù)器端差距較大,因而在手機端如何將大模型運行起來,并帶給用戶流暢的使用體驗并不是一件容易的事情。為了對手機端的大模型推理進行優(yōu)化,PerfXLLM目前主要采用的手段有低精度量化、算子融合以及核心算子調(diào)優(yōu)

3.1.低精度量化

低精度量化指的是將更高精度的數(shù)據(jù)表示類型轉(zhuǎn)化成低精度的數(shù)據(jù)表示類型來加快計算過程。常用的低精度量化有fp16、int8、int4等。通過低精度的量化,可以減少訪存開銷和內(nèi)存空間,通過特殊計算單元加快運算。因而可以獲得比原精度更高的性能表現(xiàn)。PerfXLLM需要將7B的模型運行在手機上。如果是fp16的模型,則需要大概14GB的內(nèi)存占用。但是目前市面上手機內(nèi)存一般不超過16GB,再減去系統(tǒng)本身所需要的內(nèi)存占用以及其他APP可能需要的內(nèi)存空間,必須使用低精度量化才能滿足。

PerfXLLM采用的是AWQ量化方法,只對權(quán)重進行量化。對于fp16的模型參數(shù),將其量化成int4類型,內(nèi)存占用減少到原來的1/4。所采用的group_size為128,只需要額外存儲1%左右的scale和zero參數(shù)。

wKgaomVhpNKAWqjlAAMz5QXzJbk176.png

3.2.算子融合

算子融合是將多個算子融合成一個,從而減少中間結(jié)果的數(shù)據(jù)讀取和寫入操作,并且也能有效地減少Kernel launch所需要的開銷。為了提高推理速度,PerfXLLM進行的算子融合操作主要體現(xiàn)在三個部分。第一部分是將殘差網(wǎng)絡(luò)的加法操作和歸一化操作進行融合,避免了中間結(jié)果在全局內(nèi)存中的搬運;第二部分是將生成QKV的三次矩陣乘操作融合成一次,使用更大維度的矩陣乘法操作,從而更充分地利用硬件性能;第三部分是將self attention中的操作全部融合成一個算子,這些操作包含針對QK的旋轉(zhuǎn)編碼,QKV的兩次矩陣乘法以及中間的Softmax操作。具體的示意圖如下。

wKgaomVhpNOAJRSOAAIK2Hdzed0213.png

3.3.核心算子調(diào)優(yōu)

語言大模型中所需要的算子較少,并且絕大部分性能開銷都集中在1-2個算子上,因而針對核心算子的細致調(diào)優(yōu)便顯得尤為關(guān)鍵。在手機端,當生成token數(shù)量較少時,Attention相關(guān)算子的耗時占比非常少,而GEMM(通用矩陣乘法)類的算子耗時幾乎占據(jù)了整個推理過程。對于大模型推理而言,一般會分為兩個過程。在第一個過程中,輸入的token數(shù)量大于1,對應(yīng)的算子即GEMM。第二個過程中,輸入的token數(shù)量恒定為1,對應(yīng)的算子即GEMV(矩陣向量乘法)。因此,推理優(yōu)化的核心問題在于如何提高GEMM和GEMV的性能。PerxLLM對這兩個算子進行了細致的優(yōu)化。

1)針對GEMM算子。首先介紹GEMM算子的定義,給定矩陣A和B,其維度分別為[m, k]和[k,n],將兩者相乘得到矩陣C,維度為[m, n]。根據(jù)輸入token數(shù)量的不同,PerfXLLM將其分為兩種情況進行優(yōu)化。當輸入token數(shù)量較少時,矩陣B是一個高瘦矩陣,GEMM變成訪存密集型算子。當輸入token數(shù)量較多時,GEMM是一個計算密集型算子。針對兩種不同的情況,PerfXLLM采用了兩種不同的分塊模式,將所需要的數(shù)據(jù)放置在共享內(nèi)存之中,以盡可能地減少對全局內(nèi)存的數(shù)據(jù)讀取。此外,采用了向量化訪存來提高訪存效率,通過循環(huán)展開來避免流水線阻塞提高指令并行度,進行參數(shù)調(diào)優(yōu)來獲得更好的并行能力和分塊配置參數(shù)。具體的性能表現(xiàn)如下。固定M為12288,K為4096,N變化。

wKgaomVhpNOAP1dfAAG-cjcQtPM504.png

2)針對GEMV算子。需要說明的是,GEMV可以視作GEMM的一種變體,當B矩陣的n等于1時,則GEMM轉(zhuǎn)換為GEMV算子。GEMV是一個典型的訪存密集型算子,其優(yōu)化核心在于如何提高訪存效率,并掩蓋計算所需要的開銷。PerfXLLM通過向量化訪存來提高訪存效率,通過循環(huán)展開來避免流水線阻塞提高指令并行度。并且針對int4類型的GEMV,通過共享內(nèi)存來存儲zero和scale來減少對全局內(nèi)存的數(shù)據(jù)訪問。此外,對A矩陣的兩個維度進行分塊來提高并行性。使用Image類型來提高對于B向量的訪存性能。

以上一些披露的信息,表明了PerfXLLM已經(jīng)完成了整個計算系統(tǒng)架構(gòu)的設(shè)計,并將緊密跟隨大模型算法的更迭速度,這彌補了計算芯片迭代慢的弊端(>2年)。

四、未來規(guī)劃

4.1.更多的模型支持

4.2.支持更多的硬件

4.3.性能優(yōu)化

4.4.框架優(yōu)化

歡迎聯(lián)系我們wangjh@perfxlab.com。一起探索大模型的軟件基礎(chǔ)建設(shè)。


原文標題:澎峰科技發(fā)布大模型推理引擎PerfXLLM

文章出處:【微信公眾號:澎峰科技PerfXLab】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • RISC-V
    +關(guān)注

    關(guān)注

    46

    文章

    2574

    瀏覽量

    48859
  • 澎峰科技
    +關(guān)注

    關(guān)注

    0

    文章

    71

    瀏覽量

    3392

原文標題:澎峰科技發(fā)布大模型推理引擎PerfXLLM

文章出處:【微信號:perfxlab,微信公眾號:perfxlab】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    信而泰×DeepSeek:AI推理引擎驅(qū)動網(wǎng)絡(luò)智能診斷邁向 “自愈”時代

    DeepSeek-R1:強大的AI推理引擎底座DeepSeek是由杭州深度求索人工智能基礎(chǔ)技術(shù)研究有限公司開發(fā)的新一代AI大模型。其核心優(yōu)勢在于強大的推理
    發(fā)表于 07-16 15:29

    Imagination與科技攜手推動GPU+AI解決方案,共拓計算生態(tài)

    結(jié)合Imagination領(lǐng)先的GPUIP技術(shù)與科技在AI模型壓縮與性能優(yōu)化方面的軟硬協(xié)同能力,共同開拓面向AI行業(yè)應(yīng)用的計算解決方案,推動國產(chǎn)計算生態(tài)的繁榮
    的頭像 發(fā)表于 05-20 08:33 ?459次閱讀
    Imagination與<b class='flag-5'>澎</b><b class='flag-5'>峰</b>科技攜手推動GPU+AI解決方案,共拓計算生態(tài)

    科技發(fā)布DeepSeek智算一體機

    人工智能普惠化迎來里程碑式突破!科技發(fā)布業(yè)內(nèi)“首款”萬元級別DeepSeek智算一體機,本地運行671B滿血模型
    的頭像 發(fā)表于 02-15 16:29 ?1516次閱讀

    科技與沐曦完成聯(lián)合測試,實現(xiàn)全面兼容

    近日,科技與沐曦科技宣布,雙方已完成對PerfXLM推理引擎、PerfXCloud大模型服務(wù)平臺與沐曦曦云系列通用計算GPU的聯(lián)合測試。
    的頭像 發(fā)表于 01-21 15:20 ?639次閱讀

    科技計算軟件棧與沐曦GPU完成適配和互認證

    ?近期,科技與沐曦完成了對PerfXLM(推理引擎)、PerfXCloud(大模型服務(wù)平臺)與沐曦的曦云系列通用計算GPU的聯(lián)合測試,測
    的頭像 發(fā)表于 01-21 09:51 ?631次閱讀

    科技校園行走進湖南開放大學(xué)

    近日,科技校園行走進湖南開放大學(xué)。作為國內(nèi)頂尖的 AI Infra 企業(yè),科技滿懷熱忱,為該校師生呈獻了一場主題為 “玩轉(zhuǎn)大模型——
    的頭像 發(fā)表于 12-19 14:43 ?480次閱讀

    科技攜手湖南第一師范,開啟大模型AI學(xué)習(xí)新模式

    科技 作為國內(nèi)領(lǐng)先的AI Infra企業(yè),始終致力于推動AI技術(shù)的普及與教育。近日, 科技 與 湖南第一師范 的師生們一起探索推進了一場知識的盛宴—— 大
    的頭像 發(fā)表于 12-17 18:16 ?694次閱讀
    <b class='flag-5'>澎</b><b class='flag-5'>峰</b>科技攜手湖南第一師范,開啟大<b class='flag-5'>模型</b>AI學(xué)習(xí)新模式

    科技PerfXCloud平臺獲海光DCU生態(tài)兼容性認證

    PerfXCloud是由科技自主研發(fā)的大模型開發(fā)與服務(wù)云平臺,是主要面向教育、文旅、企業(yè)、政府等行業(yè)打造的一站式大模型微調(diào)推理應(yīng)用服務(wù)的
    的頭像 發(fā)表于 12-13 14:44 ?696次閱讀

    喜報 祝賀科技榮獲“2024中國算力卓越企業(yè)獎”

    應(yīng)用等話題進行深入探討,共同探索大模型涌現(xiàn)時刻的算力生態(tài)演進發(fā)展,為新質(zhì)生產(chǎn)力點燃新引擎。 (北京)科技有限公司憑借其卓越的技術(shù)實力和突出的市場表現(xiàn),榮獲了 “2024中國算力卓越
    的頭像 發(fā)表于 11-20 15:14 ?707次閱讀
    喜報 祝賀<b class='flag-5'>澎</b><b class='flag-5'>峰</b>科技榮獲“2024中國算力卓越企業(yè)獎”

    第一屆“云?大模型AI校園應(yīng)用創(chuàng)新賽完美結(jié)束

    在大模型人工智能的浪潮中,科技與中科曙光強強聯(lián)合,共同打造了一場大模型AI創(chuàng)新應(yīng)用盛宴——第一屆“
    的頭像 發(fā)表于 11-11 10:59 ?701次閱讀

    云”校園行:湖南科技職業(yè)學(xué)院站,共啟校園創(chuàng)新之旅!

    活動回顧 在金秋十月的尾巴,科技的“云”校園行活動來到了 湖南科技職業(yè)學(xué)院·軟件學(xué)院 。
    的頭像 發(fā)表于 10-24 11:41 ?533次閱讀
    “<b class='flag-5'>澎</b><b class='flag-5'>峰</b>云”校園行:湖南科技職業(yè)學(xué)院站,共啟校園創(chuàng)新之旅!

    科技“云”校園行活動回顧

    在金秋十月的尾巴,科技的“云”校園行活動來到了湖南科技職業(yè)學(xué)院·軟件學(xué)院。科技為師生
    的頭像 發(fā)表于 10-24 11:22 ?782次閱讀

    科技高性能大模型推理引擎PerfXLM解析

    模型的高性能推理框架,并受到廣泛關(guān)注。在歷經(jīng)數(shù)月的迭代開發(fā)后,科技重磅發(fā)布升級版本,推出全新的高性能大
    的頭像 發(fā)表于 09-29 10:14 ?1481次閱讀
    <b class='flag-5'>澎</b><b class='flag-5'>峰</b>科技高性能大<b class='flag-5'>模型</b><b class='flag-5'>推理</b><b class='flag-5'>引擎</b>PerfXLM解析

    科技受邀參加全球AI芯片峰會,探討大模型推理引擎PerfXLM面向RISC-V的移植和優(yōu)化

    最高、影響力最強的產(chǎn)業(yè)峰會之一。 本屆峰會由芯東西與智猩猩共同主辦,以 「智算紀元 共筑芯路」 為主題。峰會采用“主會議+技術(shù)論壇+展覽展示”的全新形式。科技創(chuàng)始人&CEO張先軼博士受邀參加于9月7日下午舉辦的中國RISC-V計算創(chuàng)新論壇,屆時將與大家分享 「 面向R
    的頭像 發(fā)表于 09-05 16:22 ?615次閱讀
    <b class='flag-5'>澎</b><b class='flag-5'>峰</b>科技受邀參加全球AI芯片峰會,探討大<b class='flag-5'>模型</b><b class='flag-5'>推理</b><b class='flag-5'>引擎</b>PerfXLM面向RISC-V的移植和優(yōu)化

    科技受聘為“主權(quán)級大模型”創(chuàng)新聯(lián)合體學(xué)術(shù)委員會委員

    日前,“主權(quán)級大模型“創(chuàng)新聯(lián)合體揭牌,科技CEO受聘為”主權(quán)級大模型“創(chuàng)新聯(lián)合體學(xué)術(shù)委員會委員。
    的頭像 發(fā)表于 09-02 17:37 ?1177次閱讀