chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

視覺的未來:邊緣AI為數(shù)據(jù)密集型應(yīng)用掃除障礙

Arm社區(qū) ? 來源:Arm社區(qū) ? 2023-12-05 15:39 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

一個(gè)極具前景的物聯(lián)網(wǎng)人工智能 (AI) 視覺技術(shù)應(yīng)用——通過采集店內(nèi)消費(fèi)者的數(shù)據(jù),幫助零售商利用這些視頻數(shù)據(jù),更快速、更高效地優(yōu)化產(chǎn)品陳列、布局動線和客戶體驗(yàn)。

但同時(shí)也面臨著兩個(gè)主要挑戰(zhàn):成本和復(fù)雜性。假設(shè)一家大型超市想要采集客流量、消費(fèi)者購買記錄及其它數(shù)據(jù),則需要在店內(nèi)安裝大約 15,000 個(gè)攝像頭。對于每秒 30 幀的 4K 視頻,15,000 個(gè)攝像頭每秒將產(chǎn)生 225 GB 的數(shù)據(jù)。

相較于其它形式的數(shù)據(jù),視頻的數(shù)據(jù)量十分龐大,處理流程也相當(dāng)復(fù)雜,包括圖像識別、物體檢測和場景分析。這些 AI 視覺任務(wù)需要先進(jìn)的算法和模型支持,這讓計(jì)算變得更為復(fù)雜。此外,這類大數(shù)據(jù)需要傳送回云端進(jìn)行高效計(jì)算,再發(fā)送回來,以便進(jìn)行決策判斷。顯然,每秒 225 GB 的數(shù)據(jù)并不具有經(jīng)濟(jì)性。

但現(xiàn)在早已不是 2018 年了。在過去五年中,上述的場景發(fā)生了巨大的變化?,F(xiàn)在,結(jié)合 AI 與機(jī)器學(xué)習(xí) (ML)[1],經(jīng)過不斷提升后的邊緣處理能力可實(shí)現(xiàn)更高的效率,意味著許多極具前景的視覺應(yīng)用在以往所面臨的巨大經(jīng)濟(jì)性障礙正在被逐步掃除。

釋放邊緣 AI 視覺的創(chuàng)新力

此前,很多關(guān)鍵性技術(shù)都各自為政,幾乎很難或根本不可能與其它重要組件相互集成,以實(shí)現(xiàn)一個(gè)無縫創(chuàng)新的生態(tài)系統(tǒng)。在同質(zhì)處理的環(huán)境中,人們用一個(gè)解決方案來滿足所有的需求,但這對于不同的視覺工作負(fù)載提供定制化解決方案的實(shí)現(xiàn),是極其困難的。那現(xiàn)如今有什么不同呢?

工程師開發(fā)者們已攻克了成本、復(fù)雜性及其它一些難題。以復(fù)雜性這一挑戰(zhàn)為例。降低視覺解決方案的成本和復(fù)雜性的途徑之一是,為開發(fā)者在邊緣解決方案(異構(gòu)計(jì)算)的實(shí)施過程中提供更高的靈活性。

芯片設(shè)計(jì)公司正在生產(chǎn)性能更加強(qiáng)大的處理器,帶來了更高計(jì)算性能的同時(shí)維持高能效表現(xiàn)。這些處理器包括 CPU、GPU、ISP 和加速器,能夠在一些資源受限的環(huán)境下處理 AI 和 ML 等復(fù)雜任務(wù)。此外,通過 AI 加速器,無論是作為 SoC 內(nèi)核,還是作為獨(dú)立的 SoC,均能夠在邊緣高效地執(zhí)行 AI 算法。

解決復(fù)雜性

談到復(fù)雜性方面的問題。2022 年,Arm 推出了 ArmMali-C55,這是 Arm 迄今推出的最小芯片面積下,可實(shí)現(xiàn)高性能表現(xiàn)的圖像信號處理器 (ISP)。該處理器集高圖像質(zhì)量、高吞吐量、高能效和芯片面積優(yōu)勢于一體,適合端點(diǎn) AI、智能家居攝像頭、AR/VR 和智能顯示屏等應(yīng)用。該處理器的吞吐量高達(dá) 1.2Gpix/sec (每秒 12 億像素),可帶來更高的性能表現(xiàn),是嚴(yán)苛的視覺處理任務(wù)的理想之選。在向異構(gòu)計(jì)算推進(jìn)過程中,Mali-C55 的設(shè)計(jì)用途之一便是搭配 Cortex-A 或 Cortex-M CPU,無縫集成到 SoC 設(shè)計(jì)中。

這一點(diǎn)非常關(guān)鍵,因?yàn)樵?SoC 中,ISP 的輸出通常被直接發(fā)送至 ML 加速器中,以便通過神經(jīng)網(wǎng)絡(luò)或類似算法做進(jìn)一步的處理。這涉及到為 ML 模型提供縮放圖像,以處理諸如物體檢測和姿態(tài)估計(jì)等任務(wù)。

這種協(xié)同作用反過來又催生了具備 ML 功能的攝像頭和“軟件定義攝像頭”的概念,使 OEM 廠商和服務(wù)提供商能夠在全球范圍內(nèi)部署攝像頭,并提供具備動態(tài)功能增強(qiáng)的迭代功能和商業(yè)模式。

舉個(gè)例子,假設(shè)在一個(gè)停車場,每個(gè)車位上方都安裝了攝像頭,用于判斷該車位是否泊車。在 2018 年,這是種不錯的解決方案,駛?cè)胪\噲龅鸟{駛員能夠一眼看到哪里有空余車位。但在 2023 年,這種解決方案已不具經(jīng)濟(jì)性。利用邊緣 AI 的概念,僅在每一層的出入口放置一到兩個(gè)攝像頭,利用 AI 算法算出剩余空車位,這樣的方案才符合 2023 年的思維模式。

再次回到大型超市的場景:15,000 個(gè)攝像頭每秒產(chǎn)生 225 GB 的數(shù)據(jù)?,F(xiàn)在你應(yīng)該知道如何提供解決方案了吧?

亞馬遜早已意識到這一問題,在其最新版本的 “Just Walk Out” 商店技術(shù)中,攝像頭模塊的計(jì)算能力已得到提升。將 AI 部署在邊緣側(cè),以實(shí)現(xiàn)更高效、更快速的計(jì)算。

借助這樣強(qiáng)大且經(jīng)濟(jì)高效的視覺技術(shù),超市零售商或許可以通過分析店內(nèi)攝像頭記錄下的視頻數(shù)據(jù),進(jìn)行分析、得到結(jié)論,舉例來說,大多數(shù)顧客會在上午 9 點(diǎn)至 11 點(diǎn)之間購買橙子,繼而確定在每天中午前后需要補(bǔ)充貨架上的橙子。通過進(jìn)一步分析,零售商發(fā)現(xiàn)很多顧客(出于隱私原因而在視頻數(shù)據(jù)中匿名)在同一次購物期間還會購買花生。由此,可以根據(jù)這些反饋對商品的陳列進(jìn)行調(diào)整。

適當(dāng)?shù)奈恢?,?zhǔn)確的計(jì)算

將適當(dāng)?shù)倪吘?AI 計(jì)算[2]部署在更靠近傳感器的位置,能減少延遲性,提高安全性并降低成本,還可以催生新的業(yè)務(wù)模式。

視頻監(jiān)控即服務(wù) (VSaaS)[3] 便是由此誕生的一種業(yè)務(wù)模式。VSaaS 包含視頻錄制、存儲、遠(yuǎn)程管理及網(wǎng)絡(luò)安全的配置,將本地?cái)z像頭與云端的視頻管理系統(tǒng)相結(jié)合。根據(jù) Transparency Market Research[4] 預(yù)測,截至 2027 年,VSaaS 市場規(guī)模將達(dá)到 1,320 億美元。

然而,從更廣泛的角度來看,許多蘊(yùn)含巨大機(jī)遇仍尚未爆發(fā)。受限于經(jīng)濟(jì)、處理能力的限制或純粹的復(fù)雜性等因素,許多強(qiáng)大的潛在應(yīng)用仍在等待迎風(fēng)而上。比如:

智慧城市:在智慧城市領(lǐng)域,通過視頻分析實(shí)現(xiàn)交通管理、人流分析和停車空間優(yōu)化,由此產(chǎn)生海量數(shù)據(jù)。

工業(yè)自動化:質(zhì)量控制、缺陷檢測和流程優(yōu)化。

自動駕駛汽車:自動駕駛汽車(比如自動駕駛汽車和無人機(jī))上的傳感器和攝像頭,為導(dǎo)航和安全系統(tǒng)采集數(shù)據(jù),實(shí)時(shí)感知周圍情況。

虛擬現(xiàn)實(shí) (VR) 和增強(qiáng)現(xiàn)實(shí) (AR):沉浸式 VR 和 AR 體驗(yàn)需要實(shí)時(shí)渲染和處理高分辨率視覺內(nèi)容,因此會生成大量數(shù)據(jù)。

走在前沿的實(shí)踐者不會作壁上觀。在韓國平澤市,該市的政府計(jì)劃利用 AI 和自動駕駛等智慧城市技術(shù)構(gòu)建試點(diǎn)平臺,并將于 2025 年完成,之后計(jì)劃逐步在全市進(jìn)行普及。

這座擁有五十萬人口的城市正努力應(yīng)對交通擁堵和交通事故導(dǎo)致的行人意外死亡問題。作為全市“智慧城市”改革的一部分,專家們在視覺設(shè)備中部署了 Arm 合作伙伴 Nota.ai 的 Nespresso 平臺[5],這是一種 AI 模型自動壓縮解決方案,有助于打造智能交通系統(tǒng)。

在設(shè)備方面,諸多巧妙的設(shè)計(jì)正在助力客戶實(shí)現(xiàn)視覺愿景。例如奇景光電 (Himax) 的 WiseEye-II,這是一款智能影像感測方案,可部署在一系列由電池驅(qū)動的消費(fèi)類和家庭安防應(yīng)用中,包括筆記本電腦、門鈴、門鎖、攝像頭和智能辦公室。該解決方案與 Arm 微控制器和神經(jīng)處理器內(nèi)核相結(jié)合,使機(jī)器視覺 AI 更深入地融合到消費(fèi)類和智能家居設(shè)備中。

得益于邊緣 AI 技術(shù)取得的驚人進(jìn)步,當(dāng)下正在開發(fā)的示例和為未來創(chuàng)新所做的設(shè)計(jì)正逐步成為現(xiàn)實(shí)。而在視覺領(lǐng)域,這些技術(shù)正在基于 Arm 架構(gòu)而構(gòu)建。

除了硬件,Arm 還通過軟件庫、互聯(lián)標(biāo)準(zhǔn)、安全框架和 Arm 虛擬硬件等開發(fā)工具,幫助開發(fā)者更快速、更高效地開發(fā)圖像解決方案,開發(fā)者無需等待硬件就緒,便可在目標(biāo)架構(gòu)上對其應(yīng)用進(jìn)行虛擬化運(yùn)行。

過去,人們曾希望利用視覺技術(shù)改變世界,挖掘未曾被開發(fā)的大量數(shù)據(jù),但由于成本和復(fù)雜性,這一夢想被認(rèn)為遙不可及。但現(xiàn)在,它們已成為現(xiàn)實(shí)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 自動駕駛
    +關(guān)注

    關(guān)注

    791

    文章

    14558

    瀏覽量

    174534
  • ai技術(shù)
    +關(guān)注

    關(guān)注

    1

    文章

    1311

    瀏覽量

    25524
  • 邊緣AI
    +關(guān)注

    關(guān)注

    0

    文章

    185

    瀏覽量

    5765

原文標(biāo)題:大咖觀點(diǎn) | 視覺的未來:邊緣 AI 為數(shù)據(jù)密集型應(yīng)用掃除障礙

文章出處:【微信號:Arm社區(qū),微信公眾號:Arm社區(qū)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    工業(yè)視覺網(wǎng)關(guān):RK3576賦能多路檢測與邊緣AI

    ,軟硬件鏈路短多卡多驅(qū)動,系統(tǒng)復(fù)雜度高 AI擴(kuò)展內(nèi)置NPU,近端推理需獨(dú)立推理卡或云端依賴說明:以上工程經(jīng)驗(yàn)參考,實(shí)際指標(biāo)視鏡頭、光學(xué)與算法復(fù)雜度而定。 四、價(jià)值總結(jié)基于米爾 RK3576 的工業(yè)視覺網(wǎng)關(guān)
    發(fā)表于 10-16 17:56

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+AI的科學(xué)應(yīng)用

    理論、實(shí)驗(yàn)及仿真統(tǒng)一起來,催生了數(shù)據(jù)密集型科學(xué),這就是第四范式。它利用大量的計(jì)算和數(shù)據(jù)處理來研究復(fù)雜的問題和現(xiàn)象。特點(diǎn)如下: 第四范式帶來的質(zhì)變: 第五范式: 科學(xué)范式的演變:二、科學(xué)發(fā)現(xiàn)的過程和方法
    發(fā)表于 09-17 11:45

    AI 邊緣計(jì)算網(wǎng)關(guān):開啟智能新時(shí)代的鑰匙?—龍興物聯(lián)

    ,這一過程常受網(wǎng)絡(luò)延遲和不穩(wěn)定的困擾。如今,借助 AI 邊緣計(jì)算網(wǎng)關(guān),數(shù)據(jù)處理任務(wù)下沉至網(wǎng)絡(luò)邊緣,在本地即可快速完成。以智能安防監(jiān)控例,在
    發(fā)表于 08-09 16:40

    AI未來,屬于那些既能寫代碼,又能焊電路的“雙棲人才”

    的信號:AI真正的未來,不只屬于“算法天才”,更屬于那些既能寫代碼,又能焊電路的“雙棲工程師”。無論是在AI芯片、智能終端、機(jī)器人、邊緣計(jì)算還是大模型下沉的討論中,我們不斷聽到同一個(gè)問
    發(fā)表于 07-30 16:15

    【書籍評測活動NO.64】AI芯片,從過去走向未來:《AI芯片:科技探索與AGI愿景》

    DeepSeek,大模型應(yīng)用密集出現(xiàn)、頻繁升級,這讓作者意識到有必要撰寫一本新的AI芯片圖書,以緊跟時(shí)代步伐、介紹新興領(lǐng)域和最新動向。 這就是《AI芯片:前沿技術(shù)與創(chuàng)新未來》的姊妹篇—
    發(fā)表于 07-28 13:54

    打通邊緣智能之路:面向嵌入式設(shè)備的開源AutoML正式發(fā)布----加速邊緣AI創(chuàng)新

    、模型選擇、超參數(shù)調(diào)整并針對特定硬件進(jìn)行優(yōu)化,學(xué)習(xí)曲線極為陡峭。因而,開發(fā)者肯定希望能夠在微控制器等邊緣器件和其他受限平臺上,輕松地構(gòu)建和部署性能穩(wěn)健、資源密集型的機(jī)器學(xué)習(xí)模型,而無需在復(fù)雜的代碼或硬件限制上耗費(fèi)精力。 近日我
    的頭像 發(fā)表于 07-17 16:08 ?306次閱讀
    打通<b class='flag-5'>邊緣</b>智能之路:面向嵌入式設(shè)備的開源AutoML正式發(fā)布----加速<b class='flag-5'>邊緣</b><b class='flag-5'>AI</b>創(chuàng)新

    I/O密集型任務(wù)開發(fā)指導(dǎo)

    使用異步并發(fā)可以解決單次I/O任務(wù)阻塞的問題,但是如果遇到I/O密集型任務(wù),同樣會阻塞線程中其它任務(wù)的執(zhí)行,這時(shí)需要使用多線程并發(fā)能力來進(jìn)行解決。 I/O密集型任務(wù)的性能重點(diǎn)通常不在于CPU的處理
    發(fā)表于 06-19 07:19

    CPU密集型任務(wù)開發(fā)指導(dǎo)

    CPU密集型任務(wù)是指需要占用系統(tǒng)資源處理大量計(jì)算能力的任務(wù),需要長時(shí)間運(yùn)行,這段時(shí)間會阻塞線程其它事件的處理,不適宜放在主線程進(jìn)行。例如圖像處理、視頻編碼、數(shù)據(jù)分析等。 基于多線程并發(fā)機(jī)制處理CPU
    發(fā)表于 06-19 06:05

    借助NVIDIA技術(shù)實(shí)現(xiàn)機(jī)器人裝配和接觸密集型操作

    本期 NVIDIA 機(jī)器人研究與開發(fā)摘要 (R2D2) 將探討 NVIDIA 研究中心針對機(jī)器人裝配任務(wù)的多種接觸密集型操作工作流,以及它們?nèi)绾谓鉀Q傳統(tǒng)固定自動化在魯棒性、適應(yīng)性和可擴(kuò)展性等方面的關(guān)鍵挑戰(zhàn)。
    的頭像 發(fā)表于 06-04 13:51 ?411次閱讀
    借助NVIDIA技術(shù)實(shí)現(xiàn)機(jī)器人裝配和接觸<b class='flag-5'>密集型</b>操作

    Deepseek海思SD3403邊緣計(jì)算AI產(chǎn)品系統(tǒng)

    海思SD3403邊緣計(jì)算AI框架,提供了一套開放式AI訓(xùn)練產(chǎn)品工具包,解決客戶低成本AI系統(tǒng),針對差異化AI 應(yīng)用場景,自己采集樣本
    發(fā)表于 04-28 11:05

    Banana Pi 發(fā)布 BPI-AI2N &amp; BPI-AI2N Carrier,助力 AI 計(jì)算與嵌入式開發(fā)

    低功耗特性。搭載 Renesas 獨(dú)有的 DRP-AI 加速器,支持 15 Sparse TOPS的 AI 計(jì)算能力,使其在計(jì)算機(jī)視覺、邊緣 AI
    發(fā)表于 03-19 17:54

    FPGA+AI王炸組合如何重塑未來世界:看看DeepSeek東方神秘力量如何預(yù)測......

    和并行計(jì)算能力,將AI模型(如CNN、LSTM、Transformer等)部署到FPGA上,實(shí)現(xiàn)高效的數(shù)據(jù)預(yù)處理、實(shí)時(shí)推理和后處理。? 定制化解決方案:根據(jù)具體應(yīng)用場景(如自動駕駛、機(jī)器視覺、
    發(fā)表于 03-03 11:21

    金倉數(shù)據(jù)庫入選《2024年度專利密集型產(chǎn)品名單》

    2月8日, 國家專利密集型產(chǎn)品備案認(rèn)定試點(diǎn)平臺公布了《2024年度專利密集型產(chǎn)品名單》,由電科金倉自主研發(fā)的金倉數(shù)據(jù)庫管理系統(tǒng)(KingbaseES)憑借扎實(shí)的技術(shù)積淀與市場驗(yàn)證,成功入選該名
    的頭像 發(fā)表于 02-23 15:42 ?666次閱讀
    金倉<b class='flag-5'>數(shù)據(jù)</b>庫入選《2024年度專利<b class='flag-5'>密集型</b>產(chǎn)品名單》

    AI賦能邊緣網(wǎng)關(guān):開啟智能時(shí)代的新藍(lán)海

    在數(shù)字化轉(zhuǎn)型的浪潮中,AI邊緣計(jì)算的結(jié)合正掀起一場深刻的產(chǎn)業(yè)變革。邊緣網(wǎng)關(guān)作為連接物理世界與數(shù)字世界的橋梁,在AI技術(shù)的加持下,正從簡單的數(shù)據(jù)
    發(fā)表于 02-15 11:41

    [求職] RK3588核心板,尋找志同道合的電子發(fā)燒友!

    Cortex-A55),最高主頻2.4GHz,性能強(qiáng)勁,應(yīng)對復(fù)雜任務(wù)游刃有余。 卓越的圖形處理能力: Mali-G610 MP4 GPU,支持4K 60fps視頻解碼和編碼,輕松駕馭圖形密集型應(yīng)用。 豐富的接口
    發(fā)表于 02-11 10:49