chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Keras之父:目前很多深度學(xué)習領(lǐng)域的論文都是無意義

DPVg_AI_era ? 2017-12-29 11:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Keras之父、谷歌大腦人工智能深度學(xué)習研究員Fran?ois Chollet最新撰寫了一本深度學(xué)習Python教程實戰(zhàn)書籍《Python深度學(xué)習》,書中介紹了深度學(xué)習使用Python語言和強大Keras庫,詳實新穎。

近日,F(xiàn)ran?ois Chollet接受了采訪,就“深度學(xué)習到底是什么”、“Python為何如此廣受歡迎”、“目前深度學(xué)習面臨的主要挑戰(zhàn)”等議題進行了回答。他認為,目前很多深度學(xué)習領(lǐng)域的論文都是無意義的,因為這些研究使用了不科學(xué)、不規(guī)范的研究方法。

關(guān)于本人

問:您主要的工作內(nèi)容是什么?

答:我在谷歌大腦團隊工作,花了很多時間開發(fā)Keras。我也參加TensorFlow的工作。最近我主要在寫機器學(xué)習、計算機視覺、將深度學(xué)習應(yīng)用于定理證明等方面的論文。我的主要研究興趣是理解AI中的抽象和推理問題,如何從感知得到抽象的、高度概括的模型。

深度學(xué)習的本質(zhì)、挑戰(zhàn)、和未來

問:深度學(xué)習到底是什么?

答:深度學(xué)習是機器學(xué)習的一種具體方法。與以前的方法相比,它更加強大和靈活。在大多數(shù)應(yīng)用程序中,我們所說的“深度學(xué)習”是指一種把大量由人類注釋的數(shù)據(jù)轉(zhuǎn)換為以與人類相似的方式自動注釋新數(shù)據(jù)的軟件。您可以通過這種方式自動完成很多不同的任務(wù)。深度學(xué)習尤其擅長理解“感知”數(shù)據(jù),如圖像、視頻或聲音。

我來舉例說明。假設(shè)有很多圖片都帶有相關(guān)聯(lián)標簽(如“貓”、“狗”)。深度學(xué)習可以讓你自動將數(shù)據(jù)轉(zhuǎn)換到一個“了解”如何把圖片映射到標簽的系統(tǒng),只需從示例中學(xué)習,無需任何手動調(diào)整或自定義工程。然后這種系統(tǒng)可以被應(yīng)用到新的數(shù)據(jù),將標記圖片任務(wù)有效自動化。

同樣,你可以將深度學(xué)習應(yīng)用于機器翻譯、語音識別、文本到語音轉(zhuǎn)換,光學(xué)字符識別等問題。

問:深度學(xué)習社區(qū)現(xiàn)在面臨的主要挑戰(zhàn)是什么?

答:打擊炒作、發(fā)展倫理意識、獲得科學(xué)嚴謹性。

炒作:對人工智能的大肆炒作正在危害這個領(lǐng)域。一些人正荒謬地夸大目前AI取得的進展,還說人工智能已把人類逼到了絕境。但事實并非如此。如果我們把目標設(shè)得極高,卻又不能實現(xiàn),就是逼著公眾站在我們的對立面上。而且,炒作AI這件事,本質(zhì)上是不誠實的,對公眾討論也產(chǎn)生了危害。

倫理: 現(xiàn)在部署人工智能系統(tǒng)的大多數(shù)人來自單一背景,他們往往沒有意識到自己所構(gòu)建的系統(tǒng)給人們帶來了道德影響和副作用。這將成為一個問題,因為這個群體所擁有的權(quán)力會越來越大。我們需要更多地討論這些問題,并提高人們對不道德使用AI的潛在行為的覺察力,例如具有偏見性的預(yù)測模型會影響公眾生活,或以危險的方式操縱AI。

科學(xué):每天都有大量的深度學(xué)習論文發(fā)表,其中大多數(shù)并沒有真正產(chǎn)生任何有意義的新知識,因為這些論文沒有遵循科學(xué)的研究方法。他們以模糊的方式“評估”模型,或者在他們的訓(xùn)練數(shù)據(jù)上測試過度擬合模型(尤其是生成模型和強化學(xué)習,這是深度學(xué)習研究中發(fā)展最快的兩個主題),僅在MNIST上評估模型等。深度學(xué)習簡直是科學(xué)的重災(zāi)區(qū)。同行評審?fù)ǔ2粫杂幸饬x的方式解決這些問題,也許部分原因是大多數(shù)同行評審員進入這個領(lǐng)域最多才一兩年。如果想要取得更快的進展,那么當涉及研究可重復(fù)性、基線、模型評估和統(tǒng)計顯著性時,我們需要更加嚴謹。我們目前的激勵機制是與科學(xué)相對立的:發(fā)表論文是被鼓勵的。如果你的研究聽起來既復(fù)雜又神秘,很難被正確評估研究重要性,那么發(fā)表論文就容易多了。

問:你認為深度學(xué)習的未來是什么?

答:我期望AI未來能把“直觀的”模式識別模塊與正式推理模塊相結(jié)合。我也希望AI能夠演變得更像自動化軟件開發(fā)的形式,借用目前軟件工程中的很多模式和實踐。

寫書動機

問:你出版了一本新書《Python深度學(xué)習》。為什么要寫這本書呢?

答:寫這本書的原因是,我想推出一個課程,來教那些已有Python編程能力,但沒有機器學(xué)習背景的人。

Python為何廣受歡迎

問:Python應(yīng)該是目前發(fā)展最快的編程語言,至少在高收入國家是這樣。為什么Python如此受歡迎?

答:我愛Python。學(xué)習Python很容易上手,當你習慣使用它之后,會越來越高效。與我使用過的大多數(shù)其他語言相比,Python非常直觀和優(yōu)雅。但是Python真正的殺手锏并不在于語言本身,而是周圍的生態(tài)系統(tǒng)和社區(qū)。無論你需要做什么,比如解析特定的文件格式或與特定系統(tǒng)連接,幾乎有一個Python庫在做這件事,你不必花時間去做。在數(shù)據(jù)科學(xué)和機器學(xué)習方面尤其如此,有很多很棒的工具:numpy,pandas,scikit-learn,plotting libraries等,這使得Python成為一種非常高效的語言。

我喜歡Python的另一個原因是,它并不是一個領(lǐng)域特定的語言,而是多領(lǐng)域的交叉點,從網(wǎng)站開發(fā)到數(shù)據(jù)科學(xué)和系統(tǒng)管理。這意味著無需切換到新語言來將Keras模型部署為Web API。無論你需要做什么,無論是啟動一個web應(yīng)用程序,查詢一個REST API,還是解析一些文件,訓(xùn)練最先進的深度學(xué)習模型,Python通常都會是一個很好的選擇。

給初學(xué)者的建議

問:有些聲音認為進入機器學(xué)習有壁壘。您如何看待?

答:我不同意。在過去的5年中,進入機器學(xué)習領(lǐng)域變得非常容易。當然,5-7年前這很艱難。你可能需要研究生教育。你需要用C ++或Matlab來編寫大量的低級算法。我經(jīng)歷過這些。而現(xiàn)在不一樣了。你只需要Python,很容易上手,你有權(quán)限訪問高級和易于使用的工具(如Keras)。另外,你可以在網(wǎng)上學(xué)到很多非常高質(zhì)量的資源,你可以在Kaggle上練習現(xiàn)實世界的問題。學(xué)習從未如此簡單。

問:對于初學(xué)者來說,最重要的是什么?

答:最重要的是要深刻了解深度學(xué)習能做什么,不能做什么。去感受一些best practice,比如如何正確評估模型,如何防止過度擬合。這需要把正式解釋(formal explanations)和對現(xiàn)實問題的廣泛實踐結(jié)合起來。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1813

    文章

    49751

    瀏覽量

    261621
  • python
    +關(guān)注

    關(guān)注

    57

    文章

    4858

    瀏覽量

    89599
  • 深度學(xué)習
    +關(guān)注

    關(guān)注

    73

    文章

    5591

    瀏覽量

    123917

原文標題:Keras之父:大多數(shù)深度學(xué)習論文都是垃圾,炒作AI危害很大

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    【團購】獨家全套珍藏!龍哥LabVIEW視覺深度學(xué)習實戰(zhàn)課(11大系列課程,共5000+分鐘)

    (第10系列)、YOLOv8-Tiny工業(yè)優(yōu)化版(第9系列),滿足產(chǎn)線端設(shè)備算力限制,模型推理速度提升300%。 LabVIEW生態(tài)整合 作為工業(yè)自動化領(lǐng)域主流開發(fā)環(huán)境,LabVIEW與深度學(xué)習的集成
    發(fā)表于 12-04 09:28

    【團購】獨家全套珍藏!龍哥LabVIEW視覺深度學(xué)習實戰(zhàn)可(11大系列課程,共5000+分鐘)

    領(lǐng)域主流開發(fā)環(huán)境,LabVIEW與深度學(xué)習的集成一直是行業(yè)痛點。課程提供獨家開發(fā)的labview調(diào)用框架,實現(xiàn)從模型訓(xùn)練(Python)到部署(LabVIEW)的無縫銜接,已成功應(yīng)用于DIP、AOI
    發(fā)表于 12-03 13:50

    如何深度學(xué)習機器視覺的應(yīng)用場景

    深度學(xué)習視覺應(yīng)用場景大全 工業(yè)制造領(lǐng)域 復(fù)雜缺陷檢測:處理傳統(tǒng)算法難以描述的非標準化缺陷模式 非標產(chǎn)品分類:對形狀、顏色、紋理多變的產(chǎn)品進行智能分類 外觀質(zhì)量評估:基于學(xué)習的外觀質(zhì)量標
    的頭像 發(fā)表于 11-27 10:19 ?58次閱讀

    學(xué)習RTOS的意義?

    站上可以看到,同樣是嵌入式軟件工程師,懂RTOS的崗位的薪資普遍高20~50%。 首先,要學(xué)會操作系統(tǒng)的應(yīng)用接口,用好操作系統(tǒng)實現(xiàn)項目功能; 其次,可以學(xué)習開源操作系統(tǒng)的源碼,這些都是世界上最優(yōu)
    發(fā)表于 11-27 08:16

    思必馳與上海交大聯(lián)合實驗室五篇論文入選NeurIPS 2025

    近日,機器學(xué)習與計算神經(jīng)科學(xué)領(lǐng)域全球頂級學(xué)術(shù)頂級會議NeurIPS 2025公布論文錄用結(jié)果,思必馳-上海交大聯(lián)合實驗室共有5篇論文被收錄。NeurIPS(Conference on
    的頭像 發(fā)表于 10-23 15:24 ?576次閱讀
    思必馳與上海交大聯(lián)合實驗室五篇<b class='flag-5'>論文</b>入選NeurIPS 2025

    如何在機器視覺中部署深度學(xué)習神經(jīng)網(wǎng)絡(luò)

    圖 1:基于深度學(xué)習的目標檢測可定位已訓(xùn)練的目標類別,并通過矩形框(邊界框)對其進行標識。 在討論人工智能(AI)或深度學(xué)習時,經(jīng)常會出現(xiàn)“神經(jīng)網(wǎng)絡(luò)”、“黑箱”、“標注”等術(shù)語。這些概
    的頭像 發(fā)表于 09-10 17:38 ?703次閱讀
    如何在機器視覺中部署<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習</b>神經(jīng)網(wǎng)絡(luò)

    自動駕駛中Transformer大模型會取代深度學(xué)習嗎?

    [首發(fā)于智駕最前沿微信公眾號]近年來,隨著ChatGPT、Claude、文心一言等大語言模型在生成文本、對話交互等領(lǐng)域的驚艷表現(xiàn),“Transformer架構(gòu)是否正在取代傳統(tǒng)深度學(xué)習”這一話題一直被
    的頭像 發(fā)表于 08-13 09:15 ?3924次閱讀
    自動駕駛中Transformer大模型會取代<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習</b>嗎?

    深度學(xué)習遇上嵌入式資源困境,特征空間如何破局?

    近年來,隨著人工智能(AI)技術(shù)的迅猛發(fā)展,深度學(xué)習(Deep Learning)成為最熱門的研究領(lǐng)域之一。在語音識別、圖像識別、自然語言處理等領(lǐng)域,
    發(fā)表于 07-14 14:50 ?1121次閱讀
    當<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習</b>遇上嵌入式資源困境,特征空間如何破局?

    嵌入式AI技術(shù)之深度學(xué)習:數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實現(xiàn)機器學(xué)習,網(wǎng)絡(luò)的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習的框架,可以深度理解數(shù)據(jù)中所要表示的規(guī)律。從原理上看,使用
    的頭像 發(fā)表于 04-02 18:21 ?1287次閱讀

    基于stm32h743IIK在cubeai上部署keras模型,模型輸出結(jié)果都是同一組概率數(shù)組,為什么?

    基于stm32h743IIK,在cubeai上部署keras模型,模型輸出結(jié)果都是同一組概率數(shù)組,一點也搞不明白,看社區(qū)也有相同的問題,但沒有解決方案
    發(fā)表于 03-10 06:42

    如何將Keras H5模型轉(zhuǎn)換為中間表示 (IR) 格式?

    第 1 步: 將 Keras H5 模型轉(zhuǎn)換為保存的型號格式 安裝 依賴關(guān)系: cd deployment_toolsmodel_optimizerinstall_prerequisites
    發(fā)表于 03-07 06:11

    如何排除深度學(xué)習工作臺上量化OpenVINO?的特定層?

    無法確定如何排除要在深度學(xué)習工作臺上量化OpenVINO?特定層
    發(fā)表于 03-06 07:31

    軍事應(yīng)用中深度學(xué)習的挑戰(zhàn)與機遇

    人工智能尤其是深度學(xué)習技術(shù)的最新進展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變
    的頭像 發(fā)表于 02-14 11:15 ?826次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?1358次閱讀

    傳統(tǒng)機器學(xué)習方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機器學(xué)習方法。盡管深度學(xué)習(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個強大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與
    的頭像 發(fā)表于 12-30 09:16 ?1983次閱讀
    傳統(tǒng)機器<b class='flag-5'>學(xué)習</b>方法和應(yīng)用指導(dǎo)