chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

量子效率介紹

jf_64961214 ? 來(lái)源:jf_64961214 ? 作者:jf_64961214 ? 2024-10-28 06:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

wKgZomcevdmAfOATAAHZgvYlTM0581.png

圖 1:典型背照式硅 CCD 和 InGaAs 傳感器的 QE 曲線。在490-700 nm的波長(zhǎng)范圍內(nèi),可以顯示超過(guò)90%的CCD QE。

相比之下,對(duì)于InGaAs傳感器的960-1600 nm波長(zhǎng)范圍,可以顯示超過(guò)80%的波長(zhǎng)范圍。材料(硅與InGaAs)的差異導(dǎo)致在截然不同的波長(zhǎng)范圍(分別為可見(jiàn)光與近紅外)下實(shí)現(xiàn)高QE。

量子效率 (QE) 是成像設(shè)備可以轉(zhuǎn)化為電子的入射光子的百分比。例如,如果一個(gè)傳感器有 75% 的 QE 并暴露在 100 個(gè)光子下,它將能夠轉(zhuǎn)換為 75 個(gè)電子的信號(hào)。每種傳感器技術(shù)的量化寬松都不同,高端科學(xué)傳感器的量化寬松率達(dá)到 95%。然而,它是由被檢測(cè)到的光的波長(zhǎng)和半導(dǎo)體材料決定的。圖 1 顯示了背照式硅 CCD 傳感器和 InGaAs 傳感器之間的 QE 差異。

對(duì)于CCD、EMCCD、(em)ICCD和sCMOS技術(shù),在某些波長(zhǎng)范圍內(nèi)可以達(dá)到95%的QE,但可見(jiàn)光譜的近紅光和紫外區(qū)域的光子具有較低的QE因此,傳感器的效率會(huì)降低。為了改善這些地區(qū)的量化寬松,已經(jīng)開(kāi)發(fā)了深度耗盡傳感器和涂層傳感器,從而提高了量化寬松。

硅傳感器

大多數(shù)科學(xué)傳感器都是由硅制成的。由于量化寬松取決于材料,因此重要的是要了解該元素的特性以及它如何與光相互作用。

在高純度晶體形式中,相鄰的硅原子彼此共價(jià)鍵合。需要大于帶隙能量的能量才能破壞這些鍵以產(chǎn)生電子/空穴對(duì) (~1.1 eV)。入射光的波長(zhǎng)與光子吸收深度直接相關(guān);波長(zhǎng)越短,穿透硅的深度越短。

深度耗盡硅傳感器比傳統(tǒng)的硅傳感器更厚,因此能夠檢測(cè)更長(zhǎng)波長(zhǎng)的光(即 > 700 nm,NIR)。近紅外光在硅中的穿透深度比典型的硅傳感器更深,因此硅傳感器對(duì)入射的近紅外光實(shí)際上是透明的。深度耗盡硅傳感器可在 700 – 850 nm 之間提供 >90% 的 QE,而傳統(tǒng)硅傳感器的 QE 為 >60%,如圖 2 所示。

wKgaomcevdqAXi8HAAMjsiB0CxQ729.png

圖 2:背照式 CCD 傳感器、背照式深耗盡式 CCD 傳感器和前照式 CCD 傳感器的 QE 曲線。

為了進(jìn)一步改善 QE,可以通過(guò)前照式或后照式設(shè)備來(lái)改變?cè)O(shè)備內(nèi)傳感器的方向(見(jiàn)圖 2)。前照式器件的入射光通常通過(guò)并行寄存器的柵極進(jìn)入傳感器。這些柵極由非常薄的多晶硅制成,在長(zhǎng)波長(zhǎng)下是相當(dāng)透明的,但在波長(zhǎng)小于 400 nm 時(shí)變得不透明。因此,在短波長(zhǎng)下,柵極結(jié)構(gòu)會(huì)衰減入射光。

如果硅傳感器均勻變薄,則圖像可以聚焦在沒(méi)有柵極結(jié)構(gòu)的傳感器后端。有關(guān)比較,請(qǐng)參見(jiàn)圖 3。由于柵極結(jié)構(gòu)沒(méi)有光限制,背照式器件對(duì)光表現(xiàn)出很高的靈敏度,使 95% 的 QE 成為可能。

wKgZomcevdqAKAvCAAOIqdyq1og122.png

圖 3:前照式和后照式技術(shù)的比較。入射光在照射到傳感器之前必須穿過(guò)微透鏡和金屬線,從而降低最大量子效率。與背照式傳感器相互作用的入射光首先照射到傳感器上,因此器件的 QE 不會(huì)減少。

InGaAs傳感器

只有當(dāng)光子的能量高于材料的帶隙能量或更短的波長(zhǎng)時(shí),半導(dǎo)體才會(huì)檢測(cè)到光子。InGaAs傳感器是由InAs和GaAs合金制成的半導(dǎo)體,傳統(tǒng)的InGaAs傳感器的InAs:GaAs比例為x:1-x。由于InGaAs不是天然存在的材料,因此必須在InP襯底上生長(zhǎng)單晶。

InGaAs傳感器通常具有比硅更低的帶隙能量,這意味著它們能夠檢測(cè)更長(zhǎng)的波長(zhǎng),例如短波紅外(SWIR)區(qū)域(900-1700 nm)。因此,InGaAs相機(jī)在950-1600 nm區(qū)域內(nèi)可以具有QE >80%。圖4顯示了典型InGaAs傳感器的QE曲線。通過(guò)增加單晶內(nèi)InAs的濃度,截止波長(zhǎng)可以擴(kuò)展到2600 nm。

wKgaomcevduAZb58AAB1rITA2xI281.png

圖 4:InGaAs 傳感器的典型 QE 曲線,顯示 950 – 1600 nm 范圍內(nèi)的 QE >80%,使其成為近紅外研究的理想傳感器。

盡管 InGaAs 相機(jī)在 900 – 1700 nm 范圍內(nèi)具有高 QE,但隨著器件的冷卻,遠(yuǎn)端波長(zhǎng)截止會(huì)降低。這通常每 10 個(gè)偏移 8 nmo冷卻的 C。這意味著最大限度地提高光子進(jìn)入器件的吞吐量非常重要,但是這種遠(yuǎn)端截止的偏移可能是有利的,因?yàn)樗试S傳感器充當(dāng)“可調(diào)諧”低通濾波器。圖5顯示了遠(yuǎn)端截止如何隨著溫度的降低而變化。

wKgZomcevduAblxXAAC_QQ5BTjI789.png

圖 5:當(dāng)器件冷卻時(shí),InGaAs 的遠(yuǎn)端截止波長(zhǎng)會(huì)向藍(lán)色移動(dòng)。通常,遠(yuǎn)端波長(zhǎng)每 8 nm 偏移10oC冷卻。

總結(jié)

QE是衡量設(shè)備將入射光子轉(zhuǎn)換為電子的有效性的指標(biāo)。QE波長(zhǎng)不僅取決于傳感器材料,還取決于傳感器材料。如果入射光子的能量高于半導(dǎo)體的帶隙能量,傳感器將檢測(cè)到入射光子。這就是為什么硅在 500-600 nm 之間具有 95% 的 QE,但對(duì)于更長(zhǎng)的紅外/更短的紫色波長(zhǎng)具有較低的 QE,但 InGaAs 在 SWIR 范圍 (900 – 1700 nm) 上具有高 QE,而不是可見(jiàn)光區(qū)域或中紅外波長(zhǎng)范圍 (>1700 nm)。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2573

    文章

    53867

    瀏覽量

    779951
  • CCD
    CCD
    +關(guān)注

    關(guān)注

    32

    文章

    898

    瀏覽量

    147108
  • QE
    QE
    +關(guān)注

    關(guān)注

    0

    文章

    6

    瀏覽量

    8145
  • 光子
    +關(guān)注

    關(guān)注

    0

    文章

    117

    瀏覽量

    15122
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    RIGOL示波器支持GHz級(jí)量子密鑰分發(fā)測(cè)試

    雙方可生成絕對(duì)安全的密鑰,為信息安全提供堅(jiān)實(shí)保障,在金融、軍事、政府等領(lǐng)域意義重大。 1.2示波器在量子密鑰分發(fā)測(cè)試中的作用 量子密鑰分發(fā)測(cè)試中,信號(hào)的質(zhì)量直接關(guān)系到密鑰傳輸?shù)?b class='flag-5'>效率和安全性。示波器作為重要的測(cè)量工具,能精
    的頭像 發(fā)表于 08-10 15:19 ?868次閱讀

    量子通信介紹

    圖1:用Prime BSI sCMOS相機(jī)拍攝的廣域圖像,像素陣列顯示在軸標(biāo)簽中。圖像上的大多數(shù)亮點(diǎn)是錫空位中心,強(qiáng)度按圖像右側(cè)的刻度進(jìn)行縮放。 背景 蒂姆·施羅德博士在柏林洪堡大學(xué)的綜合量子光子學(xué)
    的頭像 發(fā)表于 06-20 09:16 ?332次閱讀
    <b class='flag-5'>量子</b>通信<b class='flag-5'>介紹</b>

    量子計(jì)算最新突破!“量子+AI”開(kāi)啟顛覆未來(lái)的指數(shù)級(jí)革命

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)量子計(jì)算是一種基于量子力學(xué)原理的新型計(jì)算模式,其核心在于利用量子比特的疊加態(tài)和糾纏態(tài)特性,實(shí)現(xiàn)遠(yuǎn)超經(jīng)典計(jì)算機(jī)的并行計(jì)算能力。 ? 何為量子疊加和
    的頭像 發(fā)表于 05-28 00:40 ?1.2w次閱讀
    <b class='flag-5'>量子</b>計(jì)算最新突破!“<b class='flag-5'>量子</b>+AI”開(kāi)啟顛覆未來(lái)的指數(shù)級(jí)革命

    玻色量子重磅發(fā)布量子奇點(diǎn)計(jì)劃

    2025年4月,玻色量子旗下開(kāi)物量子開(kāi)發(fā)者社區(qū)正式發(fā)起共筑量子計(jì)算應(yīng)用新生態(tài)計(jì)劃——“量子奇點(diǎn)計(jì)劃”,計(jì)劃集“量子應(yīng)用創(chuàng)新基金+
    的頭像 發(fā)表于 05-09 16:14 ?652次閱讀

    從制備工藝到量子效率:雙維度解析超薄碲化鎘(CdTe)太陽(yáng)能電池性能

    碲化鎘(CdTe)吸收層是太陽(yáng)能電池的核心部件,其晶體結(jié)構(gòu)直接影響載流子濃度與壽命,進(jìn)而決定電池的開(kāi)路電壓(Voc)和短路電流密度(Jsc)。因此,吸收層質(zhì)量對(duì)電池效率至關(guān)重要。美能QE量子效率
    的頭像 發(fā)表于 04-11 09:04 ?1311次閱讀
    從制備工藝到<b class='flag-5'>量子</b><b class='flag-5'>效率</b>:雙維度解析超薄碲化鎘(CdTe)太陽(yáng)能電池性能

    AWG全新DDS固件如何提升量子計(jì)算機(jī)的開(kāi)發(fā)效率

    凱澤斯勞滕理工大學(xué)通過(guò)引入先進(jìn)的德思特任意波形發(fā)生器(AWG)新DDS固件選件,顯著加速了量子計(jì)算機(jī)的開(kāi)發(fā)進(jìn)程。德思特帶您了解AWG全新DDS固件如何提升量子計(jì)算機(jī)的開(kāi)發(fā)效率。
    的頭像 發(fā)表于 03-21 16:50 ?470次閱讀
    AWG全新DDS固件如何提升<b class='flag-5'>量子</b>計(jì)算機(jī)的開(kāi)發(fā)<b class='flag-5'>效率</b>?

    基于玻色量子相干光量子計(jì)算機(jī)的混合量子經(jīng)典計(jì)算架構(gòu)

    近日,北京玻色量子科技有限公司(以下簡(jiǎn)稱“玻色量子”)與北京師范大學(xué)、中國(guó)移動(dòng)研究院組成的聯(lián)合研究團(tuán)隊(duì)提出一種基于相干光量子計(jì)算機(jī)的混合量子-經(jīng)典計(jì)算架構(gòu),結(jié)合
    的頭像 發(fā)表于 03-10 15:43 ?776次閱讀
    基于玻色<b class='flag-5'>量子</b>相干光<b class='flag-5'>量子</b>計(jì)算機(jī)的混合<b class='flag-5'>量子</b>經(jīng)典計(jì)算架構(gòu)

    量子處理器的作用_量子處理器的優(yōu)缺點(diǎn)

    量子比特可以同時(shí)處于0和1的狀態(tài),這種量子疊加特性使得量子處理器能夠同時(shí)處理大量信息。此外,量子比特之間的量子糾纏特性允許一個(gè)
    的頭像 發(fā)表于 01-27 13:44 ?1266次閱讀

    量子處理器是什么_量子處理器原理

    量子處理器(QPU)是量子計(jì)算機(jī)的核心部件,它利用量子力學(xué)原理進(jìn)行高速數(shù)學(xué)和邏輯運(yùn)算、存儲(chǔ)及處理量子信息。以下是對(duì)量子處理器的詳細(xì)
    的頭像 發(fā)表于 01-27 11:53 ?1447次閱讀

    玻色量子上線550量子比特云服務(wù)

    2025年1月,由北京玻色量子科技有限公司(簡(jiǎn)稱“玻色量子”)自研的相干光量子計(jì)算云平臺(tái)正式上線,可支持550計(jì)算量子比特云服務(wù)(以下簡(jiǎn)稱“玻色量子
    的頭像 發(fā)表于 01-13 09:11 ?1601次閱讀

    量子通信與量子計(jì)算的關(guān)系

    量子通信與量子計(jì)算是兩個(gè)緊密相連的領(lǐng)域,它們之間存在密切的關(guān)系,具體表現(xiàn)在以下幾個(gè)方面: 一、基本概念 量子通信 :是利用量子疊加態(tài)和糾纏效應(yīng)進(jìn)行信息傳遞的新型通信方式。它基于
    的頭像 發(fā)表于 12-19 15:53 ?1870次閱讀

    量子通信的基本原理 量子通信網(wǎng)絡(luò)的構(gòu)建

    量子通信的基本原理 1. 量子疊加原理 量子疊加原理是量子通信的基礎(chǔ)之一。在量子力學(xué)中,一個(gè)量子
    的頭像 發(fā)表于 12-19 15:50 ?3110次閱讀

    量子通信技術(shù)的應(yīng)用 量子通信與傳統(tǒng)通信的區(qū)別

    量子通信技術(shù)的應(yīng)用 量子通信技術(shù)是一種前沿的通信技術(shù),它基于量子力學(xué)原理,利用量子態(tài)進(jìn)行信息傳遞。這種技術(shù)具有高度的安全性和獨(dú)特的物理特性,使得它在多個(gè)領(lǐng)域具有廣泛的應(yīng)用前景。 軍事領(lǐng)
    的頭像 發(fā)表于 12-19 15:45 ?2469次閱讀

    是德示波器在量子通信中的潛在應(yīng)用

    量子通信技術(shù)概述及其挑戰(zhàn) 量子通信利用量子力學(xué)的原理,例如量子疊加和量子糾纏,實(shí)現(xiàn)安全、高速的信息傳輸。與經(jīng)典通信相比,
    的頭像 發(fā)表于 11-26 16:46 ?837次閱讀
    是德示波器在<b class='flag-5'>量子</b>通信中的潛在應(yīng)用

    本源量子等向北京“金融量子云實(shí)驗(yàn)平臺(tái)”提供自主量子算力

    近日,由本源量子提供自主量子主算力的“金融量子云實(shí)驗(yàn)平臺(tái)”正式上線,該平臺(tái)由北京金融科技產(chǎn)業(yè)聯(lián)盟主辦,本源量子公司聯(lián)合共建,云端可提供量子
    的頭像 發(fā)表于 10-30 08:05 ?871次閱讀
    本源<b class='flag-5'>量子</b>等向北京“金融<b class='flag-5'>量子</b>云實(shí)驗(yàn)平臺(tái)”提供自主<b class='flag-5'>量子</b>算力