chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

高性能MEMS加速度計低成本解決方案

電子設計 ? 來源:互聯(lián)網(wǎng) ? 作者:佚名 ? 2018-06-12 09:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導航和AHRS系統(tǒng)、機器健康狀況檢測的振動監(jiān)控、基礎設施的結構健康狀況監(jiān)控和平臺穩(wěn)定、井下定向鉆探的傾斜監(jiān)控、施工行業(yè)平路機和勘測設備的調平、吊車穩(wěn)定系統(tǒng)吊桿傾角測量的高精度傾角計……

它們,都需要高性能 MEMS 加速度計來提供低成本解決方案!

一般,加速度計會經(jīng)受不同幅度的振動,但上述這些應用的另一個不同方面是振動的頻率成分。振動與傳感器和系統(tǒng)誤差源相結合可能導致振動校正,這是高性能加速度計的一個重要指標。

本文將告訴你們——

? MEMS 加速度計中的振動校正是如何發(fā)生的?

? 測量振動校正需要知道的參數(shù)以及使用的技術。

作為案例研究,文中會討論低噪聲、低功耗加速度計 ADXL355 的振動校正。ps.低振動校正誤差以及所有其他特性,使這款器件成為上述精密應用的理想之選。

振動校正的來源

振動校正誤差 (VRE) 是加速度計對交流振動(被整流為直流)的響應,表現(xiàn)為加速度計失調的異常偏移。在傾角計等應用中,這是一個重大誤差源,因為加速度計的直流輸出是目標信號,失調的任何改變都可能被錯誤地解讀為傾角變化,導致誤差一路向下傳遞,從而引起安全系統(tǒng)誤觸發(fā)、平臺穩(wěn)定或鉆桅對準機制過度補償?shù)取?/p>

VRE 高度依賴于加速度計所經(jīng)受的振動特性曲線,不同應用施加于加速度計的振動模式會不同,因而 VRE 可能不同。振動校正有多種發(fā)生機制,本文討論其中的兩種。

非對稱軌

重力產(chǎn)生一個靜態(tài) 1 g (9.8 m/s2) 加速度場,當加速度計敏感軸豎直對齊時,其測量范圍會有一個偏移。2 g 滿量程范圍的傳感器與重力加速度對齊時,將只能測量 1 g 峰值振動,否則響應會被削波。超過 1 g 的對稱激勵信號的平均值將不為零,原因是在經(jīng)受額外 1 g 加速度的方向上,電平會被削波。

圖 1 中,一個激勵振動信號施加于 2 g 滿量程傳感器上。當振動為 0.3 g rms(300到600樣本之間)時,失調沒有可觀測的偏移。然而,當振動為 1 g rms(600到1000樣本之間)時,VRE約為 –100 mg。

“圖1.圖1. ±2 g滿量程范圍的加速度計因為非對稱削波而產(chǎn)生的振動校正圖解

VRE 可建模為一個截斷分布的平均偏移,受加速度計滿量程范圍的限制。當傳感器在 1 g 場中經(jīng)受隨機振動時,輸入激勵信號可建模為一個平均值 μ= 1 g 且標準差 σ= X 的正態(tài)分布,其中X表示輸入振動幅度均方根值。傳感器輸出建模為雙截斷正態(tài)分布,輸出值下界和上界分別為–R和+R,其中R為傳感器的最大范圍。此雙截斷正態(tài)分布的平均值計算如下:

“”

其中,

“”

為概率密度函數(shù),

“”

為其累積分布函數(shù)。

α 和 β 被定義為

“” “”

這樣 VRE 即為:

“”

比例因子非線性誤差

非線性誤差是指工作范圍內加速度計輸出與最佳擬合直線的偏差。此偏差常常用滿量程輸出范圍的百分比表示。加速度計的非線性誤差可能引起 VRE。

描述加速度計非線性的常見模型是n次多項式。輸出ao (LSB)可表示為輸入ai (g)的函數(shù):

“”

其中:

K0:失調 (LSB)

K1:比例因子 (LSB/g)

Kn:非線性的n次項系數(shù),n = 2,3, … (LSB/gn)

考慮一個簡單的正弦輸入加速度:

“”

此輸入的時間平均值為零。加速度計的輸出可表示為:

“”

時間平均輸出等于上式右側所有分量的時間平均值之和。奇數(shù)次項的平均值為零。帶入偶數(shù)次項的平均值

“” “”

輸出的時間平均值即為:

“”

其中Grms為輸入加速度的均方根值。上式說明,在一個正弦振動的情況下,二次非線性轉換為直流失調的偏移 (K2Grms2)。

“”代表振動校正系數(shù) (VRC),單位為 μg/g2-rms。

振動校正的幅度和頻率相關性

振動幅度很小時,VRE 以傳感器非線性為主,可用 VRC 來表示: VRE = VRC × vib2rms。然而,當振動幅度大于滿量程范圍時,VRE 往往以上一部分所述的非對稱削波為主。另外,正如之前提到的,加速度計輸出的任何非零失調也會引起非對稱削波。大多數(shù)針對工業(yè)應用而設計的MEMS 加速度計都會內置故障安全電路,在有很大振動時,它會關閉傳感器偏置電路,防止檢測元件受損。振動幅度很大時,此特性可能會在失調中進一步引起異常偏移,使 VR E惡化。

由于各種諧振和器件中的濾波器,VRE 常常具有很強的頻率相關性。由于諧振器的兩極響應,在傳感器的諧振頻率下,MEMS 傳感器諧振會放大振動,放大比率等于諧振品質因數(shù),而在頻率較高時則會抑制振動。諧振品質因數(shù)較高的傳感器,振動幅度越大,其VRE也越大。由于高頻帶內振動的積分效應,較大的測量帶寬也會引起較高的VRE。信號處理電路中實現(xiàn)的模擬和數(shù)字濾波器可抑制輸出端的帶外振動峰值和諧波,但對 VRE 沒有明顯作用,原因是振動輸入被偶數(shù)次非線性整流為直流信號。

測量振動校正

一旦將加速度計部署于現(xiàn)場,便無法實時補償 VRE。在有些應用中,振動引起失調中出現(xiàn)較小直流偏移是可以容忍的,對此可以測量 VRE 以估計加速度計輸出中的誤差,從而確定 VRE 是否在允許限度內。在任何振動測量中,振動臺和試驗夾具必須平齊,并且必須使用精密振動臺以抑制振動臺跨軸振動、偏移和結構諧振引起的誤差。另外,試驗夾具必須具有適當?shù)膭偠龋_保夾具諧振頻率離加速度計帶寬和振動曲線頻段很遠。最優(yōu)夾具設計的最低諧振頻率應當比最高振動頻率高出大約 50%。

正弦振動特性曲線

正弦振動方法是最常用且現(xiàn)有文獻討論最多的方法,已被納入 IEEE標準 1293-1998。一般程序是將一個正弦振動輸入施加于加速度計,然后測量失調偏移與均方根振動幅度(vibrms)的關系。VRC 可以通過對此數(shù)據(jù)應用最小二乘法來估算:

“”

由于可以很好地控制幅度,并且可以確保加速度計不會削波,因此通過這種方法能夠精確測量 VRC。這種測試還能用來識別并量化器件諧振對 VRE 的影響。然而,它一次只能測試一個頻率,而要充分衡量傳感器性能,必須分別測試加速度計帶寬范圍內的多個頻率。

隨機振動特性曲線

VRE 也可以利用隨機振動輸入來測量。通常,實際的振動不像正弦振動特性曲線那樣呈周期性或可預測,因此通過這種方法可以衡量加速度計在大部分應用中的性能。通過量化寬頻率范圍內寬帶激勵的失調偏移,這種方法更適合于同時納入所有擾頻并激勵所有器件諧振。然而,它不保證峰峰值振動幅度,故而獲得的VRE為頻率范圍上的平均值。

圖 2 比較了配置為 ±2 g 范圍的 ADXL355 Z 軸傳感器的截斷平均值模型與實測VRE。測量中,Z 軸與重力(1 g場)對齊,利用 Unholtz-Dickie 振動臺施加一個隨機振動特性曲線(50 Hz至2 kHz頻段)。利用一個參考加速度計(PCB Piezotronics 352C23型)測量振動幅度;當振動幅度提高到滿量程范圍以上時,測量失調偏移。截斷平均值模型(擬合到2.5 g截斷)與測量結果擬合得很好。由于機械傳感器開銷和輸出帶寬限制(測量數(shù)據(jù)中的加速度計帶寬為1kHz,但模型不考慮帶寬),截斷相對于設置的滿量程范圍預計會有偏差。當振動水平達到8 g時,±2 g范圍的超范圍保護電路就會激活。高斯分布振動的波峰因數(shù)約為3,因此超過2.5 g rms后,實測性能開始明顯偏離模型。

“圖2.圖2. 截斷平均值擬合與 ADXL355 實測振動校正的比較

影響VRE的其他因素

MEMS 傳感器諧振會影響加速度計的振動校正。高質量因數(shù)會導致頻率接近傳感器諧振頻率的振動信號被放大,引起較大 VRE。這可以通過比較 ADXL355(±8 g范圍、1 kHz帶寬)的 Z 軸傳感器與X軸和Y軸傳感器的VRE性能得知;圖 3 顯示X軸和Y軸傳感器的 VRE在 3 g rms 左右達到峰值,因為其 Q 高于 Z 軸傳感器。

“圖3.圖3. 在 ADXL355 的兩個 DUT 中,高 Q(X軸、Y軸)和低 Q(Z軸)傳感器的 VRE 比較

使用不必要的較大帶寬時,也會導致加速度計對較高頻率成分求均值,從而對 VRE 產(chǎn)生不利影響。圖4反映了這一點,其比較了 ADXL355 DUT(±2 g范圍)的 Y 軸傳感器在兩種不同帶寬設置下的 VRE。125 Hz 帶寬設置的 VRE 顯著低于1 kHz帶寬設置的VRE。

“圖4.圖4. 1 g 場中 ADXL355 的 Y 軸傳感器(±2 g范圍)在兩種不同帶寬設置(125 Hz和1 kHz)下的VRE

結語

為加速度計選擇合適的帶寬以抑制高頻振動,可以避免很多振動相關問題。通過放大諧振時的振動耦合,包裝因素(如封裝和安裝諧振)也會影響 VRE。確保封裝有適當?shù)膭偠?,讓封裝和安裝諧振頻率位于加速度計帶寬之外,是實現(xiàn)良好振動校正性能的關鍵。

總之,振動校正誤差是 MEMS 加速度計的一個重要指標,設計利用 MEMS 加速度計在高振動環(huán)境中進行直流測量時,應當考慮這種效應。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • mems
    +關注

    關注

    129

    文章

    4451

    瀏覽量

    198328
  • 加速度計
    +關注

    關注

    6

    文章

    806

    瀏覽量

    47968
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    小巧身軀,精準感知:走進MEMS加速度計的輕量化高性能時代

    在現(xiàn)代工業(yè)和科技應用中,MEMS加速度計因其獨特的微型化、集成化和高性能特點,正逐步取代傳統(tǒng)加速度計,成為振動監(jiān)測、姿態(tài)感知、運動控制等領域的核心元件。它不僅實現(xiàn)了傳感器尺寸與功耗的大
    的頭像 發(fā)表于 01-13 17:44 ?295次閱讀
    小巧身軀,精準感知:走進<b class='flag-5'>MEMS</b><b class='flag-5'>加速度計</b>的輕量化<b class='flag-5'>高性能</b>時代

    超高精度 MEMS 加速度計:極致性能的微型傳感新標桿

    ,高精尖的需求往往意味著體積與性能的平衡難題 —— 而艾瑞科的超高精度MEMS加速度計(ER-MA-6),正以CLCC48封裝的緊湊形態(tài),打破了這一桎梏。不僅如此,ER-MA-6更是擁有三個不同維度
    發(fā)表于 01-06 15:38

    TDK InvenSense ICM - 42370 - P:高性能三軸加速度計的深度剖析

    加速度計.pdf 產(chǎn)品概述 ICM - 42370 - P是一款高性能MEMS MotionTracking設備,采用小巧的2.5x3x0.76 mm 14 - pin LGA封裝。它集成了三軸
    的頭像 發(fā)表于 12-25 17:10 ?418次閱讀

    探索NXP FXLS8964AF 3軸低g加速度計:特性、應用與設計要點

    探索NXP FXLS8964AF 3軸低g加速度計:特性、應用與設計要點 在汽車電子領域,對于高性能、低功耗的傳感器需求日益增長。NXP的FXLS8964AF 3軸低g加速度計,憑借其出色的特性和豐
    的頭像 發(fā)表于 12-25 10:20 ?319次閱讀

    深入解析FXLS8971CF:3軸低g加速度計的卓越性能與應用

    深入解析FXLS8971CF:3軸低g加速度計的卓越性能與應用 在當今工業(yè)和醫(yī)療物聯(lián)網(wǎng)(IoT)領域,對于高性能、低功耗的傳感器需求日益增長。NXP Semiconductors
    的頭像 發(fā)表于 12-24 14:00 ?277次閱讀

    深入解析FXLS8961AF:汽車應用中的3軸低g加速度計

    Semiconductors推出的FXLS8961AF 3軸低g加速度計。 文件下載: NXP Semiconductors FXLS8961AF 3軸MEMS加速度計.pdf 一、概述
    的頭像 發(fā)表于 12-24 13:55 ?294次閱讀

    探索Series 660低成本可嵌入式加速度計:應用與技術解析

    公司的Series 660低成本可嵌入式加速度計,它為高產(chǎn)量和商業(yè)OEM應用中的振動和沖擊測量提供了經(jīng)濟實惠的解決方案。 文件下載: Amphenol PCB Piezotronics 660系列嵌入式
    的頭像 發(fā)表于 12-12 15:45 ?292次閱讀
    探索Series 660<b class='flag-5'>低成本</b>可嵌入式<b class='flag-5'>加速度計</b>:應用與技術解析

    探索333D系列Digiducer USB數(shù)字加速度計:高精度振動測量解決方案

    探索333D系列Digiducer USB數(shù)字加速度計:高精度振動測量解決方案 在電子工程師的日常工作中,振動測試與故障排查是一項至關重要的任務。而選擇一款合適的加速度計,對于獲取準確、可靠的振動
    的頭像 發(fā)表于 12-12 15:30 ?370次閱讀

    加速度計都有哪些分類?

    加速度計的分類主要依據(jù)其工作原理和測量維度(軸數(shù)),以下是詳細的分類:按工作原理分類(這是最核心的分類方式)這是根據(jù)加速度計內部如何感知和轉換加速度信號來劃分的。
    的頭像 發(fā)表于 12-04 15:55 ?411次閱讀
    <b class='flag-5'>加速度計</b>都有哪些分類?

    MEMS加速度計如何實現(xiàn)“微克級”超高精度測量?

    在精密導航、結構健康監(jiān)測、高動態(tài)姿態(tài)控制等領域,加速度計的精度直接決定了系統(tǒng)的性能上限。傳統(tǒng)高精度加速度計往往體積大、功耗高、成本昂貴,難以在嵌入式、移動平臺中廣泛應用。那么,有沒有一
    的頭像 發(fā)表于 12-02 15:16 ?334次閱讀
    <b class='flag-5'>MEMS</b><b class='flag-5'>加速度計</b>如何實現(xiàn)“微克級”超高精度測量?

    加速度計伺服電路模塊原理與應用

    、石英撓性加速度計等高精度傳感器設計,是實現(xiàn)其力平衡回路的“大腦”與“神經(jīng)中樞”。 一、模塊的核心功能與定位 加速度計伺服電路模塊的核心使命,是為傳感器提供完整的力平衡回路解決方案。它集成了三大關鍵功能:
    的頭像 發(fā)表于 11-28 15:43 ?332次閱讀

    傳統(tǒng)格局將被打破?這款MEMS加速度計如何實現(xiàn)石英級精度

    在慣性測量領域,高精度加速度計的市場格局似乎早已固化:石英加速度計憑借其卓越的穩(wěn)定性長期占據(jù)著高端應用的統(tǒng)治地位。然而,這一格局正在被悄然打破。ER-MA-6 MEMS加速度計的出現(xiàn),
    的頭像 發(fā)表于 09-26 14:59 ?729次閱讀
    傳統(tǒng)格局將被打破?這款<b class='flag-5'>MEMS</b><b class='flag-5'>加速度計</b>如何實現(xiàn)石英級精度

    MEMS加速度計與石英加速度計的發(fā)展現(xiàn)狀與水平對比

    在工程測量與慣性導航領域,加速度計是感知運動與振動的核心傳感器。其中,微機電系統(tǒng)(MEMS加速度計和石英加速度計是兩種技術路線迥異但應用廣泛的重要類型。它們各自的發(fā)展現(xiàn)狀和技術水平呈
    的頭像 發(fā)表于 09-19 14:55 ?1135次閱讀
    <b class='flag-5'>MEMS</b><b class='flag-5'>加速度計</b>與石英<b class='flag-5'>加速度計</b>的發(fā)展現(xiàn)狀與水平對比

    超高精度MEMS加速度計能否撼動石英加速度計的市場地位?

    在慣性傳感技術飛速發(fā)展的今天,ER-MA-6 MEMS加速度計以其突破性的技術指標,正在挑戰(zhàn)傳統(tǒng)石英加速度計的市場地位。這款采用先進微機電系統(tǒng)技術打造的高精度傳感器,不僅繼承了MEMS
    的頭像 發(fā)表于 08-28 15:21 ?599次閱讀
    超高精度<b class='flag-5'>MEMS</b><b class='flag-5'>加速度計</b>能否撼動石英<b class='flag-5'>加速度計</b>的市場地位?

    高性能石英加速度計,滿足最嚴苛應用需求

    在精度、可靠性和環(huán)境適應性至關重要的行業(yè)中,ER-QA-02A高性能石英加速度計無疑是一款顛覆性的產(chǎn)品。專為最具挑戰(zhàn)性的環(huán)境設計,這款先進的加速度計以無與倫比的精度和穩(wěn)定性,成為航空航天、國防、工業(yè)以及地震監(jiān)測等領域的理想選擇。
    的頭像 發(fā)表于 02-19 17:41 ?1041次閱讀