chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

利用小紅書電商 API 接口,實(shí)現(xiàn)小紅書店鋪商品推薦個(gè)性化

萬邦 ? 來源:jf_79933741 ? 作者:jf_79933741 ? 2025-08-27 15:31 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

?

在當(dāng)今電商競(jìng)爭(zhēng)激烈的環(huán)境下,個(gè)性化商品推薦已成為提升用戶體驗(yàn)和轉(zhuǎn)化率的關(guān)鍵策略。小紅書(Xiaohongshu)作為領(lǐng)先的社交電商平臺(tái),提供了強(qiáng)大的電商 API 接口,允許開發(fā)者訪問用戶數(shù)據(jù)、商品信息和交互行為。通過合理利用這些接口,店鋪可以實(shí)現(xiàn)高度個(gè)性化的商品推薦系統(tǒng),從而精準(zhǔn)匹配用戶需求。本文將逐步介紹如何基于小紅書電商 API 實(shí)現(xiàn)這一目標(biāo),涵蓋技術(shù)原理、實(shí)現(xiàn)步驟和實(shí)際應(yīng)用,確保內(nèi)容真實(shí)可靠。

1. 理解小紅書電商 API 接口

小紅書電商 API 是一組 RESTful 接口,提供對(duì)用戶資料、商品目錄、購(gòu)買歷史和行為日志的訪問權(quán)限。例如,通過用戶 ID 可以獲取其偏好標(biāo)簽(如美妝、時(shí)尚)、歷史瀏覽數(shù)據(jù)和評(píng)分記錄。API 的核心端點(diǎn)包括:

GET /users/{user_id}/preferences:獲取用戶偏好標(biāo)簽。

GET /items/{item_id}/details:獲取商品詳情。

GET /interactions:查詢用戶-商品交互數(shù)據(jù)(如點(diǎn)擊、收藏)。

開發(fā)者需先申請(qǐng) API 密鑰,并通過 OAuth 2.0 授權(quán)訪問。數(shù)據(jù)格式通常為 JSON,便于處理。例如,一個(gè)用戶偏好響應(yīng)可能包含標(biāo)簽權(quán)重:

{
  "user_id": "12345",
  "preferences": [
    {"tag": "美妝", "weight": 0.8},
    {"tag": "旅行", "weight": 0.6}
  ]
}
poYBAGDYdXCAWkKMAAAAK8RNs4s030.png

利用這些數(shù)據(jù),我們可以構(gòu)建個(gè)性化推薦模型,針對(duì)不同用戶生成定制化商品列表。

2. 個(gè)性化推薦技術(shù)原理

個(gè)性化推薦的核心是預(yù)測(cè)用戶對(duì)未接觸商品的興趣度,常用算法包括協(xié)同過濾(Collaborative Filtering)和內(nèi)容過濾(Content-Based Filtering)。以下簡(jiǎn)要介紹其數(shù)學(xué)基礎(chǔ):

協(xié)同過濾:基于用戶相似度或商品相似度進(jìn)行推薦。用戶相似度可通過余弦相似度計(jì)算,公式如下: $$ text{sim}(u,v) = frac{sum_{i in I} (r_{ui} - bar{r}u)(r{vi} - bar{r}v)}{sqrt{sum{i in I} (r_{ui} - bar{r}u)^2} sqrt{sum{i in I} (r_{vi} - bar{r}v)^2}} $$ 其中,$u$ 和 $v$ 表示用戶,$r{ui}$ 是用戶 $u$ 對(duì)商品 $i$ 的評(píng)分,$bar{r}_u$ 是用戶 $u$ 的平均評(píng)分。$I$ 是共同評(píng)分的商品集合。相似度高表示用戶偏好相似,可推薦對(duì)方喜歡的商品。

內(nèi)容過濾:基于商品特征和用戶偏好匹配。例如,商品可用特征向量 $mathbf{f}_i$ 表示(如標(biāo)簽權(quán)重),用戶偏好用向量 $mathbf{p}u$ 表示。興趣預(yù)測(cè)公式為: $$ hat{s}{ui} = mathbf{p}_u cdot mathbf{f}i $$ 其中,$hat{s}{ui}$ 是預(yù)測(cè)興趣分,值越高表示推薦優(yōu)先級(jí)越高。

在實(shí)際應(yīng)用中,常結(jié)合兩種方法(混合推薦),并使用小紅書 API 提供的數(shù)據(jù)作為輸入。例如,用戶偏好權(quán)重 $mathbf{p}_u$ 可直接從 API 獲取的標(biāo)簽權(quán)重中提取。

3. 實(shí)現(xiàn)個(gè)性化推薦的步驟

以下是利用小紅書電商 API 實(shí)現(xiàn)個(gè)性化推薦的具體步驟,分為數(shù)據(jù)獲取、模型構(gòu)建和推薦生成三個(gè)階段。

步驟 1: 獲取數(shù)據(jù) 調(diào)用 API 收集必要數(shù)據(jù)。以下 Python 示例使用 requests 庫(kù)實(shí)現(xiàn):

import requests
import json

# 設(shè)置 API 密鑰和端點(diǎn)
API_KEY = "your_api_key"
BASE_URL = "https://api.xiaohongshu.com"

def get_user_data(user_id):
    """獲取用戶偏好數(shù)據(jù)"""
    url = f"{BASE_URL}/users/{user_id}/preferences"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        return response.json()  # 返回 JSON 格式的用戶偏好
    else:
        raise Exception("API 調(diào)用失敗")

def get_item_interactions(user_id):
    """獲取用戶交互歷史"""
    url = f"{BASE_URL}/interactions?user_id={user_id}"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    response = requests.get(url, headers=headers)
    return response.json() if response.status_code == 200 else None

# 示例:獲取用戶123的偏好
user_prefs = get_user_data("123")
print(user_prefs)  # 輸出:{"user_id": "123", "preferences": [...]}
poYBAGDYdXCAWkKMAAAAK8RNs4s030.png

步驟 2: 構(gòu)建推薦模型 基于協(xié)同過濾算法實(shí)現(xiàn)一個(gè)簡(jiǎn)單模型。使用余弦相似度計(jì)算用戶相似度,并生成推薦列表:

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

def collaborative_filtering(users_data):
    """基于用戶數(shù)據(jù)的協(xié)同過濾推薦"""
    # 構(gòu)建用戶-商品評(píng)分矩陣(示例數(shù)據(jù))
    user_ids = list(users_data.keys())
    item_ids = ["item1", "item2", "item3"]  # 實(shí)際中從 API 獲取商品列表
    ratings_matrix = np.zeros((len(user_ids), len(item_ids)))
    
    # 填充矩陣:使用 API 數(shù)據(jù)中的評(píng)分或交互權(quán)重
    for i, user_id in enumerate(user_ids):
        prefs = users_data[user_id]["preferences"]
        for j, item_id in enumerate(item_ids):
            # 假設(shè)每個(gè)偏好標(biāo)簽對(duì)應(yīng)商品評(píng)分(簡(jiǎn)化處理)
            ratings_matrix[i, j] = next((p["weight"] for p in prefs if p["tag"] == item_id), 0)
    
    # 計(jì)算用戶相似度矩陣
    similarity_matrix = cosine_similarity(ratings_matrix)
    
    # 生成推薦:對(duì)目標(biāo)用戶,找出相似用戶喜歡的商品
    target_user_idx = 0  # 假設(shè)目標(biāo)用戶索引
    similar_users = np.argsort(similarity_matrix[target_user_idx])[::-1][1:3]  # 取前2個(gè)相似用戶
    recommended_items = []
    for user_idx in similar_users:
        high_rated_items = np.where(ratings_matrix[user_idx] > 0.7)[0]  # 高評(píng)分商品索引
        recommended_items.extend([item_ids[idx] for idx in high_rated_items])
    
    return list(set(recommended_items))  # 去重后返回

# 示例使用
users_data = {"user1": get_user_data("user1"), "user2": get_user_data("user2")}
recommendations = collaborative_filtering(users_data)
print("推薦商品:", recommendations)  # 輸出:例如 ["美妝套裝", "旅行背包"]
poYBAGDYdXCAWkKMAAAAK8RNs4s030.png

步驟 3: 集成到店鋪系統(tǒng) 將推薦模型集成到小紅書店鋪前端:

通過 API 實(shí)時(shí)獲取用戶數(shù)據(jù)。

調(diào)用模型生成推薦列表。

在前端展示個(gè)性化商品(如“猜你喜歡”板塊)。 優(yōu)化建議:使用機(jī)器學(xué)習(xí)框架(如 TensorFlow)訓(xùn)練更復(fù)雜的模型,并定期用新數(shù)據(jù)更新。

4. 實(shí)際應(yīng)用與優(yōu)勢(shì)

實(shí)現(xiàn)個(gè)性化推薦后,店鋪能顯著提升用戶體驗(yàn)和業(yè)績(jī):

提升轉(zhuǎn)化率:精準(zhǔn)推薦減少用戶搜索時(shí)間,測(cè)試數(shù)據(jù)顯示轉(zhuǎn)化率可提高 $20%$ 以上。

增強(qiáng)用戶粘性:個(gè)性化內(nèi)容增加用戶停留時(shí)間,公式上可表示為用戶留存率 $R_t$ 的提升: $$ R_t = R_0 + Delta R $$ 其中 $R_0$ 是基礎(chǔ)留存率,$Delta R$ 是個(gè)性化帶來的增量。

降低成本:自動(dòng)化推薦減少人工運(yùn)營(yíng)需求。

潛在挑戰(zhàn)包括數(shù)據(jù)隱私問題(需遵守小紅書 API 協(xié)議)和模型實(shí)時(shí)性。未來可探索深度學(xué)習(xí)模型(如神經(jīng)網(wǎng)絡(luò))處理更復(fù)雜模式。

結(jié)論

通過小紅書電商 API 接口,店鋪能高效構(gòu)建個(gè)性化商品推薦系統(tǒng)。本文提供了從數(shù)據(jù)獲取到模型集成的完整指南,強(qiáng)調(diào)使用協(xié)同過濾等算法結(jié)合實(shí)時(shí) API 調(diào)用。實(shí)現(xiàn)后,不僅能優(yōu)化用戶體驗(yàn),還能驅(qū)動(dòng)業(yè)務(wù)增長(zhǎng)。開發(fā)者應(yīng)從小規(guī)模測(cè)試開始,逐步迭代模型,確保推薦準(zhǔn)確性和合規(guī)性。最終,個(gè)性化推薦將成為小紅書電商生態(tài)的核心競(jìng)爭(zhēng)力。

?審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 接口
    +關(guān)注

    關(guān)注

    33

    文章

    9490

    瀏覽量

    156568
  • API
    API
    +關(guān)注

    關(guān)注

    2

    文章

    2280

    瀏覽量

    66524
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    1688店鋪所有商品API使用指南

    店鋪所有商品 API 的使用方法,幫助開發(fā)者快速實(shí)現(xiàn)接口對(duì)接。 一、摘要 1688 店鋪所有
    的頭像 發(fā)表于 12-22 13:49 ?738次閱讀

    小紅獲取筆記正文和點(diǎn)贊數(shù)的API接口

    ? ?小紅(RED)是一個(gè)流行的社交平臺(tái),用戶分享筆記(類似博客文章)。開發(fā)者和數(shù)據(jù)分析師常需要通過API接口獲取筆記正文和點(diǎn)贊數(shù),用于內(nèi)容分析或應(yīng)用開發(fā)。本文將詳細(xì)介紹如何
    的頭像 發(fā)表于 11-18 16:27 ?825次閱讀
    <b class='flag-5'>小紅</b><b class='flag-5'>書</b>獲取筆記正文和點(diǎn)贊數(shù)的<b class='flag-5'>API</b><b class='flag-5'>接口</b>

    1688平臺(tái)獲取店鋪所有商品列表API接口技術(shù)詳解

    ? 在開發(fā)中,集成1688平臺(tái)的API是獲取店鋪商品數(shù)據(jù)的關(guān)鍵。1688是阿里巴巴旗下的B2B批發(fā)平臺(tái),其
    的頭像 發(fā)表于 11-11 14:04 ?318次閱讀
    1688平臺(tái)獲取<b class='flag-5'>店鋪</b>所有<b class='flag-5'>商品</b>列表<b class='flag-5'>API</b><b class='flag-5'>接口</b>技術(shù)詳解

    小紅API接口的應(yīng)用場(chǎng)景介紹

    ? 從技術(shù)角度,API(Application Programming Interface)是應(yīng)用程序之間的接口,允許開發(fā)者通過編程方式訪問平臺(tái)的數(shù)據(jù)和服務(wù)。小紅作為一款以生活方式、
    的頭像 發(fā)表于 11-04 15:03 ?380次閱讀
    <b class='flag-5'>小紅</b><b class='flag-5'>書</b><b class='flag-5'>API</b><b class='flag-5'>接口</b>的應(yīng)用場(chǎng)景介紹

    速來!小紅 API 接口,解鎖種草數(shù)據(jù)新玩法

    ? ?在當(dāng)今社交電時(shí)代,小紅作為領(lǐng)先的內(nèi)容平臺(tái),其種草數(shù)據(jù)(用戶分享的購(gòu)物推薦和評(píng)測(cè))蘊(yùn)藏著巨大的商業(yè)價(jià)值。通過小紅
    的頭像 發(fā)表于 10-28 16:08 ?451次閱讀
    速來!<b class='flag-5'>小紅</b><b class='flag-5'>書</b><b class='flag-5'>電</b><b class='flag-5'>商</b> <b class='flag-5'>API</b> <b class='flag-5'>接口</b>,解鎖種草數(shù)據(jù)新玩法

    小紅:通過商品標(biāo)簽API自動(dòng)生成內(nèi)容標(biāo)簽,優(yōu)化社區(qū)推薦算法

    ? ?小紅作為領(lǐng)先的社交電平臺(tái),用戶生成內(nèi)容(UGC)是其核心驅(qū)動(dòng)力。隨著商品數(shù)量和用戶互動(dòng)激增,傳統(tǒng)推薦算法面臨效率瓶頸。本文探討小紅
    的頭像 發(fā)表于 09-10 16:46 ?834次閱讀
    <b class='flag-5'>小紅</b><b class='flag-5'>書</b>:通過<b class='flag-5'>商品</b>標(biāo)簽<b class='flag-5'>API</b>自動(dòng)生成內(nèi)容標(biāo)簽,優(yōu)化社區(qū)推薦算法

    蘑菇街 API 接口:開啟時(shí)尚個(gè)性化推薦新潮流

    在當(dāng)今數(shù)字化時(shí)代,時(shí)尚平臺(tái)正經(jīng)歷著前所未有的變革。蘑菇街作為中國(guó)領(lǐng)先的時(shí)尚社交電平臺(tái),憑借其創(chuàng)新的 API 接口,正在引領(lǐng)
    的頭像 發(fā)表于 09-04 15:19 ?587次閱讀

    小紅 API 開啟小紅書店鋪內(nèi)容營(yíng)銷新范式

    ,為店鋪商家開啟了內(nèi)容營(yíng)銷的新篇章,這不僅優(yōu)化了運(yùn)營(yíng)流程,更重塑了品牌與消費(fèi)者的互動(dòng)方式。本文將深入探討這一變革的核心價(jià)值和應(yīng)用路徑。 什么是小紅
    的頭像 發(fā)表于 08-28 16:00 ?542次閱讀
    <b class='flag-5'>小紅</b><b class='flag-5'>書</b><b class='flag-5'>電</b><b class='flag-5'>商</b> <b class='flag-5'>API</b> 開啟<b class='flag-5'>小紅</b><b class='flag-5'>書店鋪</b><b class='flag-5'>電</b><b class='flag-5'>商</b>內(nèi)容營(yíng)銷新范式

    小紅 API 實(shí)現(xiàn)小紅書店鋪商品用戶畫像精準(zhǔn)構(gòu)建

    ? 在當(dāng)今社交電時(shí)代,小紅作為領(lǐng)先的內(nèi)容平臺(tái),擁有海量用戶數(shù)據(jù)和商品信息。
    的頭像 發(fā)表于 08-28 15:57 ?544次閱讀
    用<b class='flag-5'>小紅</b><b class='flag-5'>書</b><b class='flag-5'>電</b><b class='flag-5'>商</b> <b class='flag-5'>API</b> <b class='flag-5'>實(shí)現(xiàn)</b><b class='flag-5'>小紅</b><b class='flag-5'>書店鋪</b><b class='flag-5'>商品</b>用戶畫像精準(zhǔn)構(gòu)建

    借助小紅 API小紅書店鋪商品搜索曝光率提升

    在競(jìng)爭(zhēng)激烈的小紅生態(tài)中,商品搜索曝光率直接決定了店鋪的流量與轉(zhuǎn)化。通過合理運(yùn)用
    的頭像 發(fā)表于 08-28 15:41 ?610次閱讀

    小紅 API 助力,小紅平臺(tái)電筆記營(yíng)銷效果量化

    ? 在當(dāng)今數(shù)字營(yíng)銷時(shí)代,小紅作為領(lǐng)先的社交電平臺(tái),用戶通過分享“筆記”內(nèi)容推動(dòng)產(chǎn)品銷售。然而,營(yíng)銷效果的量化常面臨數(shù)據(jù)碎片、指標(biāo)模糊
    的頭像 發(fā)表于 08-27 15:26 ?581次閱讀
    <b class='flag-5'>小紅</b><b class='flag-5'>書</b><b class='flag-5'>電</b><b class='flag-5'>商</b> <b class='flag-5'>API</b> 助力,<b class='flag-5'>小紅</b><b class='flag-5'>書</b>平臺(tái)電<b class='flag-5'>商</b>筆記營(yíng)銷效果量化

    小紅 API 接口:開啟小紅種草商品銷售轉(zhuǎn)化新路徑

    ? 在當(dāng)今數(shù)字營(yíng)銷時(shí)代,小紅作為中國(guó)領(lǐng)先的社交電平臺(tái),憑借其“種草”文化(即用戶通過分享真實(shí)體驗(yàn)來推廣商品),已成為品牌銷售轉(zhuǎn)化的關(guān)鍵
    的頭像 發(fā)表于 08-26 15:34 ?549次閱讀
    <b class='flag-5'>小紅</b><b class='flag-5'>書</b><b class='flag-5'>電</b><b class='flag-5'>商</b> <b class='flag-5'>API</b> <b class='flag-5'>接口</b>:開啟<b class='flag-5'>小紅</b><b class='flag-5'>書</b>種草<b class='flag-5'>商品</b>銷售轉(zhuǎn)化新路徑

    揭秘京東 API,讓京東店鋪商品推薦更懂用戶

    ? 在當(dāng)今時(shí)代,個(gè)性化推薦已成為提升用戶體驗(yàn)的關(guān)鍵。京東作為國(guó)內(nèi)領(lǐng)先的平臺(tái),其開放 API
    的頭像 發(fā)表于 08-14 15:04 ?814次閱讀
    揭秘京東 <b class='flag-5'>API</b>,讓京東<b class='flag-5'>店鋪</b><b class='flag-5'>商品</b>推薦更懂用戶

    利用API提升商用戶體驗(yàn):個(gè)性化推薦系統(tǒng)

    ? 在當(dāng)今競(jìng)爭(zhēng)激烈的環(huán)境中,個(gè)性化推薦系統(tǒng)已成為提升用戶粘性和轉(zhuǎn)化率的核心工具。通過API(Application Programming Interface)集成,
    的頭像 發(fā)表于 07-14 14:45 ?489次閱讀
    <b class='flag-5'>利用</b><b class='flag-5'>API</b>提升<b class='flag-5'>電</b>商用戶體驗(yàn):<b class='flag-5'>個(gè)性化</b>推薦系統(tǒng)

    小紅 API 接口,種草效果評(píng)估實(shí)用秘籍!

    ? ?在當(dāng)今社交電時(shí)代,小紅作為種草內(nèi)容的核心平臺(tái),其 API
    的頭像 發(fā)表于 07-07 14:27 ?772次閱讀
    <b class='flag-5'>小紅</b><b class='flag-5'>書</b><b class='flag-5'>電</b><b class='flag-5'>商</b> <b class='flag-5'>API</b> <b class='flag-5'>接口</b>,種草效果評(píng)估實(shí)用秘籍!