chinese直男口爆体育生外卖, 99久久er热在这里只有精品99, 又色又爽又黄18禁美女裸身无遮挡, gogogo高清免费观看日本电视,私密按摩师高清版在线,人妻视频毛茸茸,91论坛 兴趣闲谈,欧美 亚洲 精品 8区,国产精品久久久久精品免费

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Google強(qiáng)化學(xué)習(xí)框架,要滿足哪三大特性

MqC7_CAAI_1981 ? 來源:未知 ? 作者:工程師郭婷 ? 2018-09-03 14:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

強(qiáng)化學(xué)習(xí)是一種非常重要 AI 技術(shù),它能使用獎勵(或懲罰)來驅(qū)動智能體(agents)朝著特定目標(biāo)前進(jìn),比如它訓(xùn)練的 AI 系統(tǒng) AlphaGo 擊敗了頂尖圍棋選手,它也是 DeepMind 的深度 Q 網(wǎng)絡(luò)(DQN)的核心部分,它可以在多個 workers 之間分步學(xué)習(xí),例如,在 Atari 2600 游戲中實現(xiàn)“超人”性能。

麻煩的是,強(qiáng)化學(xué)習(xí)框架需要花費大量時間來掌握一個目標(biāo),而且框架往往是不靈活和不總是穩(wěn)定的。

但不用擔(dān)心,Google 近日發(fā)布了一個替代方案:基于 TensorFlow 的開源強(qiáng)化學(xué)習(xí)框架 Dopamine(多巴胺)。

Google 的博文中提到,這個基于 Tensorflow 的強(qiáng)化學(xué)習(xí)框架,旨在為 RL 的研究人員提供靈活性,穩(wěn)定性和可重復(fù)性的研究。受到大腦中獎勵動機(jī)行為的主要成分的啟發(fā),以及反映神經(jīng)科學(xué)與強(qiáng)化學(xué)習(xí)研究之間強(qiáng)烈的歷史聯(lián)系,該平臺旨在實現(xiàn)可推動激進(jìn)發(fā)現(xiàn)的思辨研究(speculative research)。此版本還包括一組闡明如何使用整個框架的 colabs。

除了強(qiáng)化學(xué)習(xí)框架的發(fā)布,谷歌還推出了一個網(wǎng)站(https://google.github.io/dopamine/baselines/plots.html),允許開發(fā)人員快速可視化多個智能體的訓(xùn)練運行情況。他們希望,這一框架的靈活性和易用性將使研究人員能積極嘗試新的想法,不管是漸進(jìn)式還是激進(jìn)式的想法。

引入靈活和可重復(fù)的強(qiáng)化學(xué)習(xí)研究的新框架

強(qiáng)化學(xué)習(xí)(RL)研究在過去幾年中取得了許多重大進(jìn)展。這些進(jìn)步使得智能體可以以超人類級別的能力玩游戲。比如 Atari 游戲中 DeepMind 的 DQN ,AlphaGo ,AlphaGo Zero 以及 Open AI Five。

具體而言,在 DQN 中引入 replay memories 可以利用以前的智能體經(jīng)驗,大規(guī)模的分布式訓(xùn)練可以在多個 workers 之間分配學(xué)習(xí)過程,分布式方法允許智能體模擬完整的分布過程,而不僅僅是模擬它們期望值,以學(xué)習(xí)更完整的圖景。這種類型的進(jìn)展很重要,因為出現(xiàn)這些進(jìn)步的算法還適用于其他領(lǐng)域,例如機(jī)器人技術(shù)。

通常,這種進(jìn)步都來自于快速迭代設(shè)計(通常沒有明確的方向),以及顛覆既定方法的結(jié)構(gòu)。然而,大多數(shù)現(xiàn)有的 RL 框架并沒有結(jié)合靈活性和穩(wěn)定性以及使研究人員能夠有效地迭代 RL 方法,并因此探索可能沒有直接明顯益處的新研究方向。此外,從現(xiàn)有框架再現(xiàn)結(jié)果通常太耗時,這可能導(dǎo)致科學(xué)的再現(xiàn)性問題。

今天,我們推出了一個新的基于 Tensorflow 的框架,旨在為 RL 的研究人員提供靈活性、穩(wěn)定性和可重復(fù)性。受到大腦中獎勵動機(jī)行為的主要成分的啟發(fā),以及反映神經(jīng)科學(xué)與強(qiáng)化學(xué)習(xí)研究之間強(qiáng)烈的歷史聯(lián)系,該平臺旨在實現(xiàn)可推動激進(jìn)發(fā)現(xiàn)的思辨研究(speculative research)。此版本還包括一組闡明如何使用整個框架的 colabs。

易用性

清晰和簡潔是該框架設(shè)計中要考慮的兩個關(guān)鍵因素。我們提供更精簡的代碼(大約 15 個Python 文件),并且有詳細(xì)記錄。這是通過專注于 Arcade 學(xué)習(xí)環(huán)境(一個成熟的,易于理解的基準(zhǔn))和四個基于 value 的智能體來實現(xiàn)的:DQN,C51,一個精心策劃的 Rainbow 智能體的簡化版本,以及隱式分位數(shù)網(wǎng)絡(luò)(Implicit Quantile Network)智能體,這已在上個月的 ICML 大會上已經(jīng)發(fā)表。我們希望這種簡潔性使研究人員能夠輕松了解智能體內(nèi)部的運作狀況,并積極嘗試新的想法。

可重復(fù)性

我們對重復(fù)性在強(qiáng)化學(xué)習(xí)研究中的重要性特別敏感。為此,我們?yōu)榇a提供完整的測試覆蓋率,這些測試也可作為其他文檔形式。此外,我們的實驗框架遵循 Machado 等人給出的關(guān)于使用 Arcade 學(xué)習(xí)環(huán)境標(biāo)準(zhǔn)化經(jīng)驗評估的建議。

基準(zhǔn)測試

對于新的研究人員來說,能夠根據(jù)既定方法快速對其想法進(jìn)行基準(zhǔn)測試非常重要。因此,我們?yōu)?Arcade 學(xué)習(xí)環(huán)境支持的 60 個游戲提供四個智能體的完整培訓(xùn)數(shù)據(jù),可用作 Python pickle 文件(用于使用我們框架訓(xùn)練的智能體)和 JSON 數(shù)據(jù)文件(用于與受過其他框架訓(xùn)練的智能體進(jìn)行比較);我們還提供了一個網(wǎng)站,你可以在其中快速查看 60 個游戲中所有智能體的訓(xùn)練運行情況。

下面展示我們在 Seaquest 上的 4 個代理的訓(xùn)練情況,這是由 Arcade 學(xué)習(xí)環(huán)境支持的一種 Atari 2600 游戲。

在 Seaquest 上的 4 名智能體參加了訓(xùn)練。x 軸表示迭代,其中每次迭代是 100 萬個游戲幀(4.5 小時的實時游戲);y 軸是每場比賽獲得的平均分?jǐn)?shù)。陰影區(qū)域顯示的是來自 5 次獨立運行的置信區(qū)間。

我們還提供已經(jīng)訓(xùn)練好的深度網(wǎng)絡(luò),原始統(tǒng)計日志以及用 Tensorboard 繪圖的 Tensorflow 事件文件。這些都可以在網(wǎng)站的下載部分找到。

希望我們框架的靈活性和易用性將使研究人員敢于嘗試新的想法,包括漸進(jìn)式和激進(jìn)式的想法。我們已經(jīng)積極地將它用于我們的研究,并發(fā)現(xiàn)它能夠靈活且快速迭代許多想法。我們很高興可以為更大的社區(qū)做些貢獻(xiàn)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • Google
    +關(guān)注

    關(guān)注

    5

    文章

    1803

    瀏覽量

    60390
  • AI
    AI
    +關(guān)注

    關(guān)注

    91

    文章

    39083

    瀏覽量

    299636

原文標(biāo)題:Google發(fā)布“多巴胺”開源強(qiáng)化學(xué)習(xí)框架,三大特性全滿足

文章出處:【微信號:CAAI-1981,微信公眾號:中國人工智能學(xué)會】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    多智能體強(qiáng)化學(xué)習(xí)(MARL)核心概念與算法概覽

    訓(xùn)練單個RL智能體的過程非常簡單,那么我們現(xiàn)在換一個場景,同時訓(xùn)練五個智能體,而且每個都有自己的目標(biāo)、只能看到部分信息,還能互相幫忙。這就是多智能體強(qiáng)化學(xué)習(xí)
    的頭像 發(fā)表于 01-21 16:21 ?68次閱讀
    多智能體<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>(MARL)核心概念與算法概覽

    AI通過傳感器融合與強(qiáng)化學(xué)習(xí)破解eVTOL自主起降難題

    隨著地面交通擁堵日益加劇,向維空間效率已成為智慧城市發(fā)展的必然選擇。低空交通網(wǎng)絡(luò)建設(shè)正從一個前沿概念,迅速演進(jìn)為城市基礎(chǔ)設(shè)施的新維度。
    的頭像 發(fā)表于 01-15 13:41 ?236次閱讀

    上汽別克至境E7首發(fā)搭載Momenta R6強(qiáng)化學(xué)習(xí)大模型

    別克至境家族迎來新成員——大五座智能SUV別克至境E7首發(fā)。新車將搭載Momenta R6強(qiáng)化學(xué)習(xí)大模型,帶來全場景的智能出行體驗。
    的頭像 發(fā)表于 01-12 16:23 ?185次閱讀

    Cadence Conformal AI Studio大核心引擎重塑IC驗證

    Cadence 以 Conformal AI Studio 結(jié)合強(qiáng)化學(xué)習(xí)與分布式架構(gòu),全面升級 LEC、低功耗驗證和 ECO,在 AI 設(shè)計時代開創(chuàng)新范式。
    的頭像 發(fā)表于 01-05 10:12 ?338次閱讀

    如何訓(xùn)練好自動駕駛端到端模型?

    [首發(fā)于智駕最前沿微信公眾號]最近有位小伙伴在后臺留言提問:端到端算法是怎樣訓(xùn)練的?是模仿學(xué)習(xí)強(qiáng)化學(xué)習(xí)和離線強(qiáng)化學(xué)習(xí)類嗎?其實端到端(end-to-end)算法在自動駕駛、智能體
    的頭像 發(fā)表于 12-08 16:31 ?1298次閱讀
    如何訓(xùn)練好自動駕駛端到端模型?

    中國研究發(fā)布新型混合微電網(wǎng)系統(tǒng)

    該系統(tǒng)核心是管理能源的方法。團(tuán)隊采用調(diào)度框架,將多目標(biāo)分布魯棒優(yōu)化(DRO)與實時強(qiáng)化學(xué)習(xí)(RL)輔助機(jī)制結(jié)合。能源管理系統(tǒng)(EMS)是運行“大腦”,分布式響應(yīng)系統(tǒng)(DRO)生成基準(zhǔn)調(diào)度策略,強(qiáng)化學(xué)習(xí)(RL)模塊實時調(diào)整控制信號
    的頭像 發(fā)表于 11-27 17:05 ?495次閱讀

    線路板防漆防是防?

    的水汽和凝露。防腐蝕:保護(hù)線路板免受化學(xué)物質(zhì)、鹽霧、酸堿性氣體、霉菌等的侵蝕。防塵:防止灰塵、顆粒物、金屬碎屑等落在電路板上。線路版防漆是防,uv
    的頭像 發(fā)表于 11-07 15:59 ?469次閱讀
    線路板<b class='flag-5'>三</b>防漆<b class='flag-5'>三</b>防是<b class='flag-5'>哪</b><b class='flag-5'>三</b>防?

    今日看點:智元推出真機(jī)強(qiáng)化學(xué)習(xí);美國軟件公司SAS退出中國市場

    智元推出真機(jī)強(qiáng)化學(xué)習(xí),機(jī)器人訓(xùn)練周期從“數(shù)周”減至“數(shù)十分鐘” ? 近日,智元機(jī)器人宣布其研發(fā)的真機(jī)強(qiáng)化學(xué)習(xí)技術(shù),已在與龍旗科技合作的驗證產(chǎn)線中成功落地。據(jù)介紹,此次落地的真機(jī)強(qiáng)化學(xué)習(xí)方案,機(jī)器人
    發(fā)表于 11-05 09:44 ?1002次閱讀

    自動駕駛中常提的“強(qiáng)化學(xué)習(xí)”是個啥?

    [首發(fā)于智駕最前沿微信公眾號]在談及自動駕駛時,有些方案中會提到“強(qiáng)化學(xué)習(xí)(Reinforcement Learning,簡稱RL)”,強(qiáng)化學(xué)習(xí)是一類讓機(jī)器通過試錯來學(xué)會做決策的技術(shù)。簡單理解
    的頭像 發(fā)表于 10-23 09:00 ?534次閱讀
    自動駕駛中常提的“<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>”是個啥?

    如何在Ray分布式計算框架下集成NVIDIA Nsight Systems進(jìn)行GPU性能分析

    在大語言模型的強(qiáng)化學(xué)習(xí)訓(xùn)練過程中,GPU 性能優(yōu)化至關(guān)重要。隨著模型規(guī)模不斷擴(kuò)大,如何高效地分析和優(yōu)化 GPU 性能成為開發(fā)者面臨的主要挑戰(zhàn)之一。
    的頭像 發(fā)表于 07-23 10:34 ?2288次閱讀
    如何在Ray分布式計算<b class='flag-5'>框架</b>下集成NVIDIA Nsight Systems進(jìn)行GPU性能分析

    NVIDIA Isaac Lab可用環(huán)境與強(qiáng)化學(xué)習(xí)腳本使用指南

    Lab 是一個適用于機(jī)器人學(xué)習(xí)的開源模塊化框架,其模塊化高保真仿真適用于各種訓(xùn)練環(huán)境,Isaac Lab 同時支持模仿學(xué)習(xí)(模仿人類)和強(qiáng)化學(xué)習(xí)(在嘗試和錯誤中進(jìn)行
    的頭像 發(fā)表于 07-14 15:29 ?2155次閱讀
    NVIDIA Isaac Lab可用環(huán)境與<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>腳本使用指南

    Google Fast Pair服務(wù)簡介

    Google Fast Pair 是一項利用低功耗藍(lán)牙(Bluetooth LE)技術(shù),實現(xiàn)設(shè)備間快速安全配對及提供多種服務(wù)的協(xié)議。其主要功能包括: 設(shè)備處于配對模式時,顯示半頁通知,便于用戶進(jìn)行
    發(fā)表于 06-29 19:28

    18個常用的強(qiáng)化學(xué)習(xí)算法整理:從基礎(chǔ)方法到高級模型的理論技術(shù)與代碼實現(xiàn)

    本來轉(zhuǎn)自:DeepHubIMBA本文系統(tǒng)講解從基本強(qiáng)化學(xué)習(xí)方法到高級技術(shù)(如PPO、A3C、PlaNet等)的實現(xiàn)原理與編碼過程,旨在通過理論結(jié)合代碼的方式,構(gòu)建對強(qiáng)化學(xué)習(xí)算法的全面理解。為確保內(nèi)容
    的頭像 發(fā)表于 04-23 13:22 ?1485次閱讀
    18個常用的<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>算法整理:從基礎(chǔ)方法到高級模型的理論技術(shù)與代碼實現(xiàn)

    詳解RAD端到端強(qiáng)化學(xué)習(xí)后訓(xùn)練范式

    受限于算力和數(shù)據(jù),大語言模型預(yù)訓(xùn)練的 scalinglaw 已經(jīng)趨近于極限。DeepSeekR1/OpenAl01通過強(qiáng)化學(xué)習(xí)后訓(xùn)練涌現(xiàn)了強(qiáng)大的推理能力,掀起新一輪技術(shù)革新。
    的頭像 發(fā)表于 02-25 14:06 ?1161次閱讀
    詳解RAD端到端<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>后訓(xùn)練范式

    基于LMP91000在電化學(xué)傳感器電極故障檢測中的應(yīng)用詳解

    分析,所選雙運放的特性應(yīng)該同時滿足低失調(diào)電壓、小偏置電流、低功耗,很多時候同時滿足上述條件的雙運放型號非常有限。 由于電化學(xué)傳感器自身特點,在傳感器制造完成后通常需要金屬短路帽短接輸
    發(fā)表于 02-11 08:02